Multiplying Whole Numbers
Suppose you were asked to count all these pennies shown below.

Would you count the pennies individually? Or would you count the number of pennies in each row and add that number [latex]3[/latex] times?
Multiplication is a way to represent repeated addition. So instead of adding [latex]8[/latex] three times, we could write a multiplication expression. [latex]3\times 8[/latex].
We call each number being multiplied a factor and the result the product. We read [latex]3\times 8[/latex] as three times eight, and the result as the product of three and eight. There are several symbols that represent multiplication. These include the symbol [latex]\times[/latex] as well as the dot, [latex]\cdot[/latex], and parentheses [latex]\left(\right)[/latex].
multiplication notation
To describe multiplication, we can use symbols and words.
Operation | Notation | Expression | Read as | Result |
---|---|---|---|---|
Multiplication | ||||
[latex]\times[/latex] | [latex]3\times 8[/latex] | three times eight | the product of [latex]3[/latex] and [latex]8[/latex] | |
[latex]\cdot[/latex] | [latex]3\cdot 8[/latex] | three times eight | the product of [latex]3[/latex] and [latex]8[/latex] | |
[latex]\left(\right)[/latex] | [latex]3\left(8\right)[/latex] | three times eight | the product of [latex]3[/latex] and [latex]8[/latex] |
Operation | Word Phrase | Example | Expression |
---|---|---|---|
Multiplication | |||
times | [latex]3[/latex] times [latex]8[/latex] | [latex]3\times 8, 3\cdot 8, (3)(8)[/latex], [latex](3)8, \text{ or } 3(8)[/latex] | |
product | the product of [latex]3[/latex] and [latex]8[/latex] | [latex]3\times 8, 3\cdot 8, (3)(8)[/latex], [latex](3)8, \text{ or } 3(8)[/latex] | |
twice | twice [latex]4[/latex] | [latex]2\cdot 4[/latex] |
- [latex]7\times 6[/latex]
- [latex]12\cdot 14[/latex]
- [latex]6\left(13\right)[/latex]
In order to multiply without using models, you need to know all the one-digit multiplication facts. Make sure you know them fluently before proceeding in this section.
The table below shows the multiplication facts. Each box shows the product of the number down the left column and the number across the top row. It is important that you memorize any number facts you do not already know so you will be ready to multiply larger numbers. Start with memorizing the multiplication facts through [latex]9 \times 9[/latex]. Knowing the times tables up to [latex]12 \times 12[/latex] will allow your brain to focus on problem-solving in future math questions so you’re not stuck on the arithmetic.
[latex]×[/latex] | [latex]0[/latex] | [latex]1[/latex] | [latex]2[/latex] | [latex]3[/latex] | [latex]4[/latex] | [latex]5[/latex] | [latex]6[/latex] | [latex]7[/latex] | [latex]8[/latex] | [latex]9[/latex] | [latex]10[/latex] | [latex]11[/latex] | [latex]12[/latex] |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[latex]0[/latex] | [latex]0[/latex] | [latex]0[/latex] | [latex]0[/latex] | [latex]0[/latex] | [latex]0[/latex] | [latex]0[/latex] | [latex]0[/latex] | [latex]0[/latex] | [latex]0[/latex] | [latex]0[/latex] | [latex]0[/latex] | [latex]0[/latex] | [latex]0[/latex] |
[latex]1[/latex] | [latex]0[/latex] | [latex]1[/latex] | [latex]2[/latex] | [latex]3[/latex] | [latex]4[/latex] | [latex]5[/latex] | [latex]6[/latex] | [latex]7[/latex] | [latex]8[/latex] | [latex]9[/latex] | [latex]10[/latex] | [latex]11[/latex] | [latex]12[/latex] |
[latex]2[/latex] | [latex]0[/latex] | [latex]2[/latex] | [latex]4[/latex] | [latex]6[/latex] | [latex]8[/latex] | [latex]10[/latex] | [latex]12[/latex] | [latex]14[/latex] | [latex]16[/latex] | [latex]18[/latex] | [latex]20[/latex] | [latex]22[/latex] | [latex]24[/latex] |
[latex]3[/latex] | [latex]0[/latex] | [latex]3[/latex] | [latex]6[/latex] | [latex]9[/latex] | [latex]12[/latex] | [latex]15[/latex] | [latex]18[/latex] | [latex]21[/latex] | [latex]24[/latex] | [latex]27[/latex] | [latex]30[/latex] | [latex]33[/latex] | [latex]36[/latex] |
[latex]4[/latex] | [latex]0[/latex] | [latex]4[/latex] | [latex]8[/latex] | [latex]12[/latex] | [latex]16[/latex] | [latex]20[/latex] | [latex]24[/latex] | [latex]28[/latex] | [latex]32[/latex] | [latex]36[/latex] | [latex]40[/latex] | [latex]44[/latex] | [latex]48[/latex] |
[latex]5[/latex] | [latex]0[/latex] | [latex]5[/latex] | [latex]10[/latex] | [latex]15[/latex] | [latex]20[/latex] | [latex]25[/latex] | [latex]30[/latex] | [latex]35[/latex] | [latex]40[/latex] | [latex]45[/latex] | [latex]50[/latex] | [latex]55[/latex] | [latex]60[/latex] |
[latex]6[/latex] | [latex]0[/latex] | [latex]6[/latex] | [latex]12[/latex] | [latex]18[/latex] | [latex]24[/latex] | [latex]30[/latex] | [latex]36[/latex] | [latex]42[/latex] | [latex]48[/latex] | [latex]54[/latex] | [latex]60[/latex] | [latex]66[/latex] | [latex]72[/latex] |
[latex]7[/latex] | [latex]0[/latex] | [latex]7[/latex] | [latex]14[/latex] | [latex]21[/latex] | [latex]28[/latex] | [latex]35[/latex] | [latex]42[/latex] | [latex]49[/latex] | [latex]56[/latex] | [latex]63[/latex] | [latex]70[/latex] | [latex]77[/latex] | [latex]84[/latex] |
[latex]8[/latex] | [latex]0[/latex] | [latex]8[/latex] | [latex]16[/latex] | [latex]24[/latex] | [latex]32[/latex] | [latex]40[/latex] | [latex]48[/latex] | [latex]56[/latex] | [latex]64[/latex] | [latex]72[/latex] | [latex]80[/latex] | [latex]88[/latex] | [latex]96[/latex] |
[latex]9[/latex] | [latex]0[/latex] | [latex]9[/latex] | [latex]18[/latex] | [latex]27[/latex] | [latex]36[/latex] | [latex]45[/latex] | [latex]54[/latex] | [latex]63[/latex] | [latex]72[/latex] | [latex]81[/latex] | [latex]90[/latex] | [latex]99[/latex] | [latex]108[/latex] |
[latex]10[/latex] | [latex]0[/latex] | [latex]10[/latex] | [latex]20[/latex] | [latex]30[/latex] | [latex]40[/latex] | [latex]50[/latex] | [latex]60[/latex] | [latex]70[/latex] | [latex]80[/latex] | [latex]90[/latex] | [latex]100[/latex] | [latex]110[/latex] | [latex]120[/latex] |
[latex]11[/latex] | [latex]0[/latex] | [latex]11[/latex] | [latex]22[/latex] | [latex]33[/latex] | [latex]44[/latex] | [latex]55[/latex] | [latex]66[/latex] | [latex]77[/latex] | [latex]88[/latex] | [latex]99[/latex] | [latex]110[/latex] | [latex]121[/latex] | [latex]132[/latex] |
[latex]12[/latex] | [latex]0[/latex] | [latex]12[/latex] | [latex]24[/latex] | [latex]36[/latex] | [latex]48[/latex] | [latex]60[/latex] | [latex]72[/latex] | [latex]84[/latex] | [latex]96[/latex] | [latex]108[/latex] | [latex]120[/latex] | [latex]132[/latex] | [latex]144[/latex] |
When multiplying whole numbers we have to keep a few properties in mind.
properties of multiplication
Multiplication Property of Zero
The product of any number and [latex]0[/latex] is [latex]0[/latex].
Identity Property of Multiplication
The product of any number and [latex]1[/latex] is the number.
Commutative Property of Multiplication
Changing the order of the factors does not change their product.
To multiply numbers with more than one digit, it is usually easier to write the numbers vertically in columns just as we did for addition and subtraction.
[latex]\begin{array}{c}\hfill 27\\ \hfill \underset{\text{___}}{\times 3}\end{array}[/latex]
We start by multiplying [latex]3[/latex] by [latex]7[/latex].
We write the [latex]1[/latex] in the ones place of the product. We carry the [latex]2[/latex] tens by writing [latex]2[/latex] above the tens place.

Then we multiply the [latex]3[/latex] by the [latex]2[/latex], and add the [latex]2[/latex] above the tens place to the product. So [latex]3\times 2=6[/latex], and [latex]6+2=8[/latex]. Write the [latex]8[/latex] in the tens place of the product.

The product is [latex]81[/latex].
- [latex]15\cdot 4[/latex]
- [latex]286\cdot 5[/latex]
When we multiply by a number with two or more digits, we multiply by each of the digits separately, working from right to left. Each separate product of the digits is called a partial product. When we write partial products, we must make sure to line up the place values.
- Write the numbers so each place value lines up vertically.
- Multiply the digits in each place value.
- Work from right to left, starting with the ones place in the bottom number.
- Multiply the bottom number by the ones digit in the top number, then by the tens digit, and so on.
- If a product in a place value is more than [latex]9[/latex], carry to the next place value.
- Write the partial products, lining up the digits in the place values with the numbers above.
- Repeat for the tens place in the bottom number, the hundreds place, and so on.
- Insert a zero as a placeholder with each additional partial product.
- Work from right to left, starting with the ones place in the bottom number.
- Add the partial products.
- [latex]47\cdot 10[/latex]
- [latex]47\cdot 100[/latex]
- [latex]62\left(87\right)[/latex]
- [latex]\left(354\right)\left(438\right)[/latex]
When there are three or more factors, we multiply the first two and then multiply their product by the next factor.
For example:
to multiply | [latex]8\cdot 3\cdot 2[/latex] |
first multiply [latex]8\cdot 3[/latex] | [latex]24\cdot 2[/latex] |
then multiply [latex]24\cdot 2[/latex] | [latex]48[/latex] |
Multiply Whole Numbers in Applications
We will use the same strategy we used previously to solve applications of multiplication. First, we need to determine what we are looking for. Then we write a phrase that gives the information to find it. We then translate the phrase into math notation and simplify to get the answer. Finally, we write a sentence to answer the question.