21. [latex]P_{0} = 25,000 = \frac{d(1−(1+\frac{0.02}{12})^{−48})}{\frac{0.02}{12}} = $542.38[/latex] a month
23. A down payment of [latex]10\%[/latex] is [latex]$20,000[/latex], leaving [latex]$180,000[/latex] as the loan amount.
[latex]P_{0} = 180,000 = \frac{d(1−(1+\frac{0.05}{12})^{−30(12)})}{\frac{0.05}{12}}d = $966.28[/latex] a month
[latex]P_{0} = 180,000 = \frac{d(1−(1+\frac{0.06}{12})^{−30(12)})}{\frac{0.06}{12}}d = $1079.19[/latex] a month
25. First we find the monthly payments: [latex]P_{0} = 24,000 = \frac{d(1−(1+\frac{0.03}{12})^{−5(12)})}{\frac{0.03}{12}}⋅d = $431.25[/latex]
Remaining balance: [latex]P_{0} = \frac{431.25(1−(1+\frac{0.03}{12})^{−2(12)})}{\frac{0.03}{12}} = $10,033.45[/latex]
31. First [latex]5[/latex] years: [latex]P_{5} = \frac{50((1+\frac{0.08}{12})^{5(12)}−1)}{\frac{0.08}{12}} = $3673.84[/latex]
Next [latex]25[/latex] years: [latex]3673.84(1+\frac{.08}{12})^{25(12)} = $26,966.65[/latex]
33. Working backwards, [latex]P_{0} = \frac{10000(1−(1+\frac{0.08}{4})^{−10(4)})}{\frac{0.08}{4}} = $273,554.79[/latex] needed at retirement.
To end up with that amount of money, [latex]273,554.70 = \frac{d((1+\frac{0.08}{4})^{15(4)}−1)}{\frac{0.08}{4}}[/latex].
He’ll need to contribute [latex]d = $2398.52[/latex] a quarter.