Skip to content
Historical Counting Systems: Get Stronger Answer Key
- Partial answer: Jars: [latex]3[/latex] singles, [latex]3[/latex] @ [latex]x3, 2[/latex] @ [latex]x6,1[/latex]@ [latex]x12.3[/latex] + [latex]9[/latex] + [latex]12[/latex] + [latex]12[/latex] = [latex]36[/latex]
- [latex]113[/latex]
- [latex]3022[/latex]
- [latex]53[/latex]
- [latex]1100100[/latex]
- [latex]332[/latex]
- [latex]111100010[/latex]
- [latex]135[/latex] = [latex]6,15[/latex] base [latex]20[/latex] =

- [latex]360[/latex] = [latex]18, 0[/latex] base [latex]20[/latex] =

- [latex]10500[/latex] = [latex]1,6,5,0[/latex] base [latex]20[/latex]

- [latex]1,2,12[/latex] base [latex]20[/latex] = [latex]452[/latex] base [latex]10[/latex]
- [latex]3,0,3[/latex] base [latex]20[/latex] = [latex]1203[/latex] base [latex]10[/latex]
- [latex]32+11=1,12_{20}+11_{20}=1,23_{20}=2,3_{20}=43[/latex]

- [latex]35+148=1,15_{20}+7,8_{20}=8,23_{20}=9,320=183[/latex]

- [latex]450+844=1,2,10_{20}+2,2,4_{20}=3,4,14_{20}=1294[/latex]
