Skip to content
Polar Coordinates and Conic Sections: Get Stronger Answer Key
Understanding Polar Coordinates
[latex]B\begin{array}{cc}\left(3,\dfrac{\text{-}\pi }{3}\right)\hfill & B\left(-3,\dfrac{2\pi }{3}\right)\hfill \end{array}[/latex]
[latex]D\left(5,\dfrac{7\pi }{6}\right)D\left(-5,\dfrac{\pi }{6}\right)[/latex]
[latex]\begin{array}{cc}\left(5,-0.927\right)\hfill & \left(-5,-0.927+\pi \right)\hfill \end{array}[/latex]
[latex]\left(10,-0.927\right)\left(-10,-0.927+\pi \right)[/latex]
[latex]\left(2\sqrt{3},-0.524\right)\left(-2\sqrt{3},-0.524+\pi \right)[/latex]
[latex]\left(\begin{array}{cc}\text{-}\sqrt{3},\hfill & -1\hfill \end{array}\right)[/latex]
[latex]\left(\begin{array}{cc}-\dfrac{\sqrt{3}}{2},\hfill & \dfrac{-1}{2}\hfill \end{array}\right)[/latex]
[latex]\left(\begin{array}{cc}0,\hfill & 0\hfill \end{array}\right)[/latex]
Symmetry with respect to the [latex]x[/latex]-axis, [latex]y[/latex]-axis, and origin.
Symmetric with respect to [latex]x[/latex]-axis only.
Symmetry with respect to [latex]x[/latex]-axis only.
Line [latex]y=x[/latex]
[latex]y=1[/latex]
Hyperbola; polar form [latex]{r}^{2}\cos\left(2\theta \right)=16[/latex] or [latex]{r}^{2}=16\sec\theta[/latex].
[latex]r=\dfrac{2}{3\cos\theta -\sin\theta }[/latex]
[latex]{x}^{2}+{y}^{2}=4y[/latex]
[latex]x\tan\sqrt{{x}^{2}+{y}^{2}}=y[/latex]
[latex]y[/latex]-axis symmetry
[latex]y[/latex]-axis symmetry
[latex]x[/latex]– and [latex]y[/latex]-axis symmetry and symmetry about the pole
[latex]x[/latex]-axis symmetry
[latex]x[/latex]– and [latex]y[/latex]-axis symmetry and symmetry about the pole
no symmetry
Area and Arc Length in Polar Coordinates
[latex]\dfrac{9}{2}{\displaystyle\int }_{0}^{\pi }{\sin}^{2}\theta d\theta[/latex]
[latex]32{\displaystyle\int }_{0}^{\frac{\pi}{2}}{\sin}^{2}\left(2\theta \right)d\theta[/latex]
[latex]\dfrac{1}{2}{\displaystyle\int }_{\pi }^{2\pi }{\left(1-\sin\theta \right)}^{2}d\theta[/latex]
[latex]{\displaystyle\int }_{{\sin}^{-1}\left(\frac{2}{3}\right)}^{\frac{\pi}{2}}{\left(2 - 3\sin\theta \right)}^{2}d\theta[/latex]
[latex]{\displaystyle\int }{0}^{\pi }{\left(1 - 2\cos\theta \right)}^{2}d\theta -{\displaystyle\int }{0}^{\frac{\pi}{3}}{\left(1 - 2\cos\theta \right)}^{2}d\theta[/latex]
[latex]4{\displaystyle\int }{0}^{\frac{\pi}{3}}d\theta +16{\displaystyle\int }{\frac{\pi}{3}}^{\frac{\pi}{2}}\left({\cos}^{2}\theta \right)d\theta[/latex]
[latex]9\pi[/latex]
[latex]\dfrac{9\pi }{4}[/latex]
[latex]\dfrac{9\pi }{8}[/latex]
[latex]\dfrac{18\pi -27\sqrt{3}}{2}[/latex]
[latex]\dfrac{4}{3}\left(4\pi -3\sqrt{3}\right)[/latex]
[latex]\dfrac{3}{2}\left(4\pi -3\sqrt{3}\right)[/latex]
[latex]2\pi -4[/latex]
[latex]{\displaystyle\int }_{0}^{2\pi }\sqrt{{\left(1+\sin\theta \right)}^{2}+{\cos}^{2}\theta }d\theta[/latex]
[latex]\sqrt{2}{\displaystyle\int }_{0}^{1}{e}^{\theta }d\theta[/latex]
[latex]\dfrac{\sqrt{10}}{3}\left({e}^{6}-1\right)[/latex]
[latex]32[/latex]
[latex]6.238[/latex]
[latex]2[/latex]
[latex]4.39[/latex]
[latex]A=\pi {\left(\dfrac{\sqrt{2}}{2}\right)}^{2}=\dfrac{\pi }{2}\text{ and }\dfrac{1}{2}{\displaystyle\int }_{0}^{\pi }\left(1+2\sin\theta \cos\theta \right)d\theta =\dfrac{\pi }{2}[/latex]
[latex]C=2\pi \left(\dfrac{3}{2}\right)=3\pi \text{ and }{\displaystyle\int }_{0}^{\pi }3d\theta =3\pi[/latex]
[latex]C=2\pi \left(5\right)=10\pi \text{ and }{\displaystyle\int }_{0}^{\pi }10d\theta =10\pi[/latex]
[latex]\dfrac{dy}{dx}=\dfrac{{f}^{\prime }\left(\theta \right)\sin\theta +f\left(\theta \right)\cos\theta }{{f}^{\prime }\left(\theta \right)\cos\theta -f\left(\theta \right)\sin\theta }[/latex]
The slope is [latex]\dfrac{1}{\sqrt{3}}[/latex].
The slope is [latex]0[/latex].
At [latex]\left(4,0\right)[/latex], the slope is undefined. At [latex]\left(-4,\dfrac{\pi }{2}\right)[/latex], the slope is 0.
The slope is undefined at [latex]\theta =\dfrac{\pi }{4}[/latex].
Slope =[latex]−1[/latex].
Slope is [latex]\dfrac{-2}{\pi }[/latex].
Calculator answer: [latex]−0.836.[/latex]
Horizontal tangent at [latex]\left(\pm\sqrt{2},\dfrac{\pi }{6}\right)[/latex], [latex]\left(\pm\sqrt{2},-\dfrac{\pi }{6}\right)[/latex].
Horizontal tangents at [latex]\dfrac{\pi }{2},\dfrac{7\pi }{6},\dfrac{11\pi }{6}[/latex]. Vertical tangents at [latex]\dfrac{\pi }{6},\dfrac{5\pi }{6}[/latex] and also at the pole [latex]\left(0,0\right)[/latex].
Conic Sections
[latex]{y}^{2}=16x[/latex]
[latex]{x}^{2}=2y[/latex]
[latex]{x}^{2}=-4\left(y - 3\right)[/latex]
[latex]{\left(x+3\right)}^{2}=8\left(y - 3\right)[/latex]
[latex]\dfrac{{x}^{2}}{16}+\dfrac{{y}^{2}}{12}=1[/latex]
[latex]\dfrac{{x}^{2}}{13}+\dfrac{{y}^{2}}{4}=1[/latex]
[latex]\dfrac{{\left(y - 1\right)}^{2}}{16}+\dfrac{{\left(x+3\right)}^{2}}{12}=1[/latex]
[latex]\dfrac{{x}^{2}}{16}+\dfrac{{y}^{2}}{12}=1[/latex]
[latex]\dfrac{{x}^{2}}{25}-\dfrac{{y}^{2}}{11}=1[/latex]
[latex]\dfrac{{x}^{2}}{7}-\dfrac{{y}^{2}}{9}=1[/latex]
[latex]\dfrac{{\left(y+2\right)}^{2}}{4}-\dfrac{{\left(x+2\right)}^{2}}{32}=1[/latex]
[latex]\dfrac{{x}^{2}}{4}-\dfrac{{y}^{2}}{32}=1[/latex]
[latex]e=1[/latex], parabola
[latex]e=\dfrac{1}{2}[/latex], ellipse
[latex]e=3[/latex], hyperbola
[latex]r=\dfrac{4}{5+\cos\theta }[/latex]
[latex]r=\dfrac{4}{1+2\sin\theta }[/latex]
Hyperbola
Ellipse
Ellipse
Previous/next navigation