The inverse function determines the distance from the center of the artery at which blood is flowing with velocity [latex]V[/latex].
[latex]0.1[/latex] cm; [latex]0.14[/latex] cm; [latex]0.17[/latex] cm
[latex]$31,250, $66,667, $107,143[/latex]
[latex]p=\frac{85C}{C+75}[/latex]
[latex]34[/latex] ppb
[latex]~92^{\circ}[/latex]
[latex]~42^{\circ}[/latex]
[latex]~27^{\circ}[/latex]
[latex]x \approx 6.69, 8.51[/latex]; so, the temperature occurs on June 21 and August 15
[latex]~1.5 sec[/latex]
[latex]\tan^{-1}(\tan(2.1))\approx -1.0416[/latex]; the expression does not equal [latex]2.1[/latex] since [latex]2.1>1.57=\frac{\pi}{2}[/latex]—in other words, it is not in the restricted domain of [latex]\tan x[/latex]. [latex]\cos^{-1}(\cos(2.1))=2.1[/latex], since [latex]2.1[/latex] is in the restricted domain of [latex]\cos x[/latex].
Exponential and Logarithmic Functions
[latex]125[/latex]
[latex]2.24[/latex]
[latex]9.74[/latex]
[latex]0.01[/latex]
[latex]10,000[/latex]
[latex]46.42[/latex]
b
a
c
Domain: all real numbers, Range: [latex](2,\infty)[/latex], Horizontal asymptote at [latex]y=2[/latex]
Domain: all real numbers, Range: [latex](0,\infty)[/latex], Horizontal asymptote at [latex]y=0[/latex]
Domain: all real numbers, Range: [latex](-\infty ,1)[/latex], Horizontal asymptote at [latex]y=1[/latex]
Domain: all real numbers, Range: [latex](-1,\infty )[/latex], Horizontal asymptote at [latex]y=-1[/latex]
[latex]8^{1/3}=2[/latex]
[latex]5^2=25[/latex]
[latex]e^{-3}=\frac{1}{e^3}[/latex]
[latex]e^0=1[/latex]
[latex]\log_4(\frac{1}{16})=-2[/latex]
[latex]\log_9 1=0[/latex]
[latex]\log_{64} 4=\frac{1}{3}[/latex]
[latex]\log_9 150=y[/latex]
[latex]\log_4 0.125=-\frac{3}{2}[/latex]
Domain: [latex](1,\infty )[/latex], Range: [latex](−\infty ,\infty)[/latex], Vertical asymptote at [latex]x=1[/latex]
Domain: [latex](0,\infty)[/latex], Range: [latex](−\infty ,\infty)[/latex], Vertical asymptote at [latex]x=0[/latex]
Domain: [latex](-1,\infty)[/latex], Range: [latex](−\infty ,\infty)[/latex], Vertical asymptote at [latex]x=-1[/latex]