Matrices and Matrix Operations: Get Stronger Answer Key

Systems of Linear Equations: Two Variables

1. No, you can either have zero, one, or infinitely many. Examine graphs.

5. You can solve by substitution (isolating [latex]x[/latex] or [latex]y[/latex] ), graphically, or by addition.

7. Yes

9. Yes

11. [latex]\left(-1,2\right)[/latex]

13. [latex]\left(-3,1\right)[/latex]

15. [latex]\left(-\frac{3}{5},0\right)[/latex]

17. No solutions exist.

19. [latex]\left(\frac{72}{5},\frac{132}{5}\right)[/latex]

21. [latex]\left(6,-6\right)[/latex]

23. [latex]\left(-\frac{1}{2},\frac{1}{10}\right)[/latex]

25. No solutions exist.

27. [latex]\left(-\frac{1}{5},\frac{2}{3}\right)[/latex]

29. [latex]\left(x,\frac{x+3}{2}\right)[/latex]

31. [latex]\left(-4,4\right)[/latex]

33. [latex]\left(\frac{1}{2},\frac{1}{8}\right)[/latex]

35. [latex]\left(\frac{1}{6},0\right)[/latex]

37. [latex]\left(x,2\left(7x - 6\right)\right)[/latex]

39. [latex]\left(-\frac{5}{6},\frac{4}{3}\right)[/latex]

41. Consistent with one solution

43. Consistent with one solution

45. Dependent with infinitely many solutions

47. [latex]\left(-3.08,4.91\right)[/latex]

49. [latex]\left(-1.52,2.29\right)[/latex]

61. The numbers are 7.5 and 20.5.

63. 24,000

65. 790 sophomores, 805 freshman

67. 56 men, 74 women

69. 10 gallons of 10% solution, 15 gallons of 60% solution

73. $12,500 in the first account, $10,500 in the second account.

Systems of Linear Equations: Three Variables

1. No, there can be only one, zero, or infinitely many solutions.

7. No

9. Yes

11. [latex]\left(-1,4,2\right)[/latex]

13. [latex]\left(-\frac{85}{107},\frac{312}{107},\frac{191}{107}\right)[/latex]

15. [latex]\left(1,\frac{1}{2},0\right)[/latex]

17. [latex]\left(4,-6,1\right)[/latex]

19. [latex]\left(x,\frac{1}{27}\left(65 - 16x\right),\frac{x+28}{27}\right)[/latex]

21. [latex]\left(-\frac{45}{13},\frac{17}{13},-2\right)[/latex]

23. No solutions exist

25. [latex]\left(0,0,0\right)[/latex]

27. [latex]\left(\frac{4}{7},-\frac{1}{7},-\frac{3}{7}\right)[/latex]

29. [latex]\left(7,20,16\right)[/latex]

39. [latex]\left(\frac{1}{2},\frac{1}{5},\frac{4}{5}\right)[/latex]

43. [latex]\left(2,0,0\right)[/latex]

51. 24, 36, 48

53. 70 grandparents, 140 parents, 190 children

55. Your share was $19.95, Sarah’s share was $40, and your other roommate’s share was $22.05.

57. There are infinitely many solutions; we need more information

59. 500 students, 225 children, and 450 adults

63. $400,000 in the account that pays 3% interest, $500,000 in the account that pays 4% interest, and $100,000 in the account that pays 2% interest.

65. The United States consumed 26.3%, Japan 7.1%, and China 6.4% of the world’s oil.

69. Birds were 19.3%, fish were 18.6%, and mammals were 17.1% of endangered species

Systems of Nonlinear Equations and Inequalities: Two Variables

Solutions to Odd-Numbered Exercises

3. No. There does not need to be a feasible region. Consider a system that is bounded by two parallel lines. One inequality represents the region above the upper line; the other represents the region below the lower line. In this case, no points in the plane are located in both regions; hence there is no feasible region.

7. [latex]\left(0,-3\right),\left(3,0\right)[/latex]

9. [latex]\left(-\frac{3\sqrt{2}}{2},\frac{3\sqrt{2}}{2}\right),\left(\frac{3\sqrt{2}}{2},-\frac{3\sqrt{2}}{2}\right)[/latex]

11. [latex]\left(-3,0\right),\left(3,0\right)[/latex]

13. [latex]\left(\frac{1}{4},-\frac{\sqrt{62}}{8}\right),\left(\frac{1}{4},\frac{\sqrt{62}}{8}\right)[/latex]

15. [latex]\left(-\frac{\sqrt{398}}{4},\frac{199}{4}\right),\left(\frac{\sqrt{398}}{4},\frac{199}{4}\right)[/latex]

17. [latex]\left(0,2\right),\left(1,3\right)[/latex]

19. [latex]\left(-\sqrt{\frac{1}{2}\left(\sqrt{5}-1\right)},\frac{1}{2}\left(1-\sqrt{5}\right)\right),\left(\sqrt{\frac{1}{2}\left(\sqrt{5}-1\right)},\frac{1}{2}\left(1-\sqrt{5}\right)\right)[/latex]

21. [latex]\left(5,0\right)[/latex]

25. [latex]\left(3,0\right)[/latex]

27. No Solutions Exist

33. [latex]\left(2,0\right)[/latex]

35. [latex]\left(-\sqrt{7},-3\right),\left(-\sqrt{7},3\right),\left(\sqrt{7},-3\right),\left(\sqrt{7},3\right)[/latex]

41.
A shaded figure with a dotted line that has two marked points. The first point is at square root of two minus 1, two times (the square root of two minus one). The second point is at negative one minus square root of two, negative two times (one plus the square root of two).

43.
Two dotted, shaded figures with points marked. The first point is (negative square root of 37 over 2, 3 times square root of seven over two). The second point is (square root of 37 over 2, 3 times square root of 7 over two). The third point is (negative square root 37 over 2, negative 3 times square root 7 divided by 2). The fourth point is (square root 37 over 2, negative 3 times square root of 7 over two).

45.
Two dotted, shaded figures with marked points. The first point is negative square root of nineteen-tenths, square root of forty-seven-tenths. The second point is square root of 19 tenths, square root of 47 tenths. The third point is negative square root of 19 tenths, negative square root of 47 tenths. The fourth point is square root of 19 tenths, negative square root of 47 tenths.

49. [latex]\left(-2\sqrt{\frac{70}{383}},-2\sqrt{\frac{35}{29}}\right),\left(-2\sqrt{\frac{70}{383}},2\sqrt{\frac{35}{29}}\right),\left(2\sqrt{\frac{70}{383}},-2\sqrt{\frac{35}{29}}\right),\left(2\sqrt{\frac{70}{383}},2\sqrt{\frac{35}{29}}\right)[/latex]

51. No Solution Exists

55. 12, 288

57. 2–20 computers

Partial Fractions

Solutions to Odd-Numbered Exercises

4. Find a common denominator and condense your partial fractions back into a single fraction. If it matches the original expression it was decomposed correctly.

7. [latex]\frac{8}{x+3}-\frac{5}{x - 8}[/latex]

11. [latex]\frac{3}{5x - 2}+\frac{4}{4x - 1}[/latex]

13. [latex]\frac{5}{2\left(x+3\right)}+\frac{5}{2\left(x - 3\right)}[/latex]

17. [latex]\frac{9}{5\left(x+2\right)}+\frac{11}{5\left(x - 3\right)}[/latex]

21. [latex]\frac{1}{x - 2}+\frac{2}{{\left(x - 2\right)}^{2}}[/latex]

23. [latex]-\frac{6}{4x+5}+\frac{3}{{\left(4x+5\right)}^{2}}[/latex]

27. [latex]\frac{4}{x}-\frac{3}{2\left(x+1\right)}+\frac{7}{2{\left(x+1\right)}^{2}}[/latex]

29. [latex]\frac{4}{x}+\frac{2}{{x}^{2}}-\frac{3}{3x+2}+\frac{7}{2{\left(3x+2\right)}^{2}}[/latex]

31. [latex]\frac{x+1}{{x}^{2}+x+3}+\frac{3}{x+2}[/latex]

33. [latex]\frac{4 - 3x}{{x}^{2}+3x+8}+\frac{1}{x - 1}[/latex]

37. [latex]\frac{1}{{x}^{2}+x+1}+\frac{4}{x - 1}[/latex]

41. [latex]-\frac{1}{4{x}^{2}+6x+9}+\frac{1}{2x - 3}[/latex]

43. [latex]\frac{1}{x}+\frac{1}{x+6}-\frac{4x}{{x}^{2}-6x+36}[/latex]

45. [latex]\frac{x+6}{{x}^{2}+1}+\frac{4x+3}{{\left({x}^{2}+1\right)}^{2}}[/latex]

47. [latex]\frac{x+1}{x+2}+\frac{2x+3}{{\left(x+2\right)}^{2}}[/latex]

49. [latex]\frac{1}{{x}^{2}+3x+25}-\frac{3x}{{\left({x}^{2}+3x+25\right)}^{2}}[/latex]

51. [latex]\frac{1}{8x}-\frac{x}{8\left({x}^{2}+4\right)}+\frac{10-x}{2{\left({x}^{2}+4\right)}^{2}}[/latex]

53. [latex]-\frac{16}{x}-\frac{9}{{x}^{2}}+\frac{16}{x - 1}-\frac{7}{{\left(x - 1\right)}^{2}}[/latex]

57. [latex]\frac{5}{x - 2}-\frac{3}{10\left(x+2\right)}+\frac{7}{x+8}-\frac{7}{10\left(x - 8\right)}[/latex]

59. [latex]-\frac{5}{4x}-\frac{5}{2\left(x+2\right)}+\frac{11}{2\left(x+4\right)}+\frac{5}{4\left(x+4\right)}[/latex]