Skip to content
Introduction to Differential Equations: Get Stronger Answer Key
Basics of Differential Equations
- [latex]1[/latex]
- [latex]3[/latex]
- [latex]1[/latex]
- [latex]1[/latex]
- [latex]y=4+\dfrac{3{x}^{4}}{4}[/latex]
- [latex]y=\dfrac{1}{2}{e}^{{x}^{2}}[/latex]
- [latex]y=2{e}^{\dfrac{\text{-}1}{x}}[/latex]
- [latex]u={\sin}^{-1}\left({e}^{-1+t}\right)[/latex]
- [latex]y=-\dfrac{\sqrt{x+1}}{\sqrt{1-x}}-1[/latex]
- [latex]y=C-x+x\text{ln}x-\text{ln}\left(\cos{x}\right)[/latex]
- [latex]y=C+\dfrac{{4}^{x}}{\text{ln}\left(4\right)}[/latex]
- [latex]y=\dfrac{2}{3}\sqrt{{t}^{2}+16}\left({t}^{2}+16\right)+C[/latex]
- [latex]x=\dfrac{2}{15}\sqrt{4+t}\left(3{t}^{2}+4t - 32\right)+C[/latex]
- [latex]y=Cx[/latex]
- [latex]y=1-\dfrac{{t}^{2}}{2},y=-\dfrac{{t}^{2}}{2}-1[/latex]
- [latex]y={e}^{\text{-}t},y=\text{-}{e}^{\text{-}t}[/latex]
- [latex]y=2\left({t}^{2}+5\right),t=3\sqrt{5}[/latex]
- [latex]y=10{e}^{-2t},t=-\dfrac{1}{2}\text{ln}\left(\dfrac{1}{10}\right)[/latex]
- [latex]y=\dfrac{1}{4}\left(41-{e}^{-4t}\right)[/latex], never
- Solution changes from increasing to decreasing at [latex]y\left(0\right)=0[/latex]
- Solution changes from increasing to decreasing at [latex]y\left(0\right)=0[/latex]
- [latex]v\left(t\right)=-32t+a[/latex]
- [latex]0[/latex] ft/s
- [latex]y=4{e}^{3t}[/latex]
- [latex]y=3 - 2t+{t}^{2}[/latex]
- [latex]y=\dfrac{1}{k}\left({e}^{kt}-1\right)[/latex] and [latex]y=x[/latex]
Direction Fields and Euler’s Method

- [latex]y=0[/latex] is a stable equilibrium

- [latex]y=0[/latex] is a stable equilibrium and [latex]y=2[/latex] is unstable

![A direction field over [-2, 2] in the x and y axes. The arrows point slightly down and to the right over [-2, 0] and gradually become vertical over [0, 2].](https://s3-us-west-2.amazonaws.com/courses-images/wp-content/uploads/sites/4175/2019/04/11234136/CNX_Calc_Figure_08_02_212.jpg)

![A direction field with arrows pointing down and to the right for nearly all points in [-2, 2] on the x and y axes. Close to the origin, the arrows become more horizontal, point to the upper right, become more horizontal, and then point down to the right again.](https://s3-us-west-2.amazonaws.com/courses-images/wp-content/uploads/sites/4175/2019/04/11234141/CNX_Calc_Figure_08_02_216.jpg)

- E
- A
- B
- A
- C
- [latex]2.24[/latex], exact: [latex]3[/latex]
- [latex]7.739364[/latex], exact: [latex]5\left(e - 1\right)[/latex]
- [latex]-0.2535[/latex], exact: [latex]0[/latex]
- [latex]1.345[/latex], exact: [latex]\dfrac{1}{\text{ln}\left(2\right)}[/latex]
- [latex]-4[/latex], exact: [latex]\dfrac{\text{-}1}{2}[/latex]

- [latex]4.0741{e}^{-10}[/latex]
Separation of Variables
- [latex]y={e}^{t}-1[/latex]
- [latex]y=1-{e}^{\text{-}t}[/latex]
- [latex]y=Cx{e}^{\dfrac{-1}{x}}[/latex]
- [latex]y=\dfrac{1}{C-{x}^{2}}[/latex]
- [latex]y=-\dfrac{2}{C+\text{ln}x}[/latex]
- [latex]y=C{e}^{x}\left(x+1\right)+1[/latex]
- [latex]y=\sin\left(\text{ln}t+C\right)[/latex]
- [latex]y=\text{-}\text{ln}\left({e}^{\text{-}x}\right)[/latex]
- [latex]y=\dfrac{1}{\sqrt{2-{e}^{{x}^{2}}}}[/latex]
- [latex]y={\text{tanh}}^{-1}\left(\dfrac{{x}^{2}}{2}\right)[/latex]
- [latex]x=\sin\left(1-t+t\text{ln}t\right)[/latex]
- [latex]y=\text{ln}\left(\text{ln}\left(5\right)\right)-\text{ln}\left(2-{5}^{x}\right)[/latex]
- [latex]y=C{e}^{-2x}+\dfrac{1}{2}[/latex]
- [latex]y=\dfrac{1}{\sqrt{2}\sqrt{C-{e}^{x}}}[/latex]
- [latex]y=C{e}^{\text{-}x}{x}^{x}[/latex]
- [latex]y=\dfrac{r}{d}\left(1-{e}^{\text{-}dt}\right)[/latex]
- [latex]y\left(t\right)=10 - 9{e}^{\dfrac{\text{-}x}{50}}[/latex]
- [latex]T\left(t\right)=20+50{e}^{-0.125t}[/latex]
- [latex]T\left(t\right)=20+38.5{e}^{-0.125t}[/latex]
- [latex]24[/latex] hours [latex]57[/latex] minutes
- [latex]T\left(t\right)=20+50{e}^{-0.125t}[/latex]
- [latex]T\left(t\right)=20+38.5{e}^{-0.125t}[/latex]
- [latex]y=\left(c+\dfrac{b}{a}\right){e}^{ax}-\dfrac{b}{a}[/latex]
- [latex]y\left(t\right)=cL+\left(I-cL\right){e}^{\dfrac{\text{-}rt}{L}}[/latex]
- [latex]y=40\left(1-{e}^{-0.1t}\right),40[/latex] g/cm²
First-Order Linear Equations and Applications
- Yes
- Yes
- [latex]y^{\prime} -{x}^{3}y=\sin{x}[/latex]
- [latex]y^{\prime} +\dfrac{\left(3x+2\right)}{x}y=\text{-}{e}^{x}[/latex]
- [latex]\dfrac{dy}{dt}-yx\left(x+1\right)=0[/latex]
- [latex]{e}^{x}[/latex]
- [latex]\text{-}\text{ln}\left(\text{cosh}x\right)[/latex]
- [latex]y=C{e}^{3x}-\dfrac{2}{3}[/latex]
- [latex]y=C{x}^{3}+6{x}^{2}[/latex]
- [latex]y=C{e}^{\dfrac{{x}^{2}}{2}}-3[/latex]
- [latex]y=C\tan\left(\dfrac{x}{2}\right)-2x+4\tan\left(\dfrac{x}{2}\right)\text{ln}\left(\sin\left(\dfrac{x}{2}\right)\right)[/latex]
- [latex]y=C{x}^{3}-{x}^{2}[/latex]
- [latex]y=C{\left(x+2\right)}^{2}+\dfrac{1}{2}[/latex]
- [latex]y=\dfrac{C}{\sqrt{x}}+2\sin\left(3t\right)[/latex]
- [latex]y=C{\left(x+1\right)}^{3}-{x}^{2}-2x - 1[/latex]
- [latex]y=C{e}^{{\text{sinh}}^{-1}x}-2[/latex]
- [latex]y=x+4{e}^{x}-1[/latex]
- [latex]y=-\dfrac{3x}{2}\left({x}^{2}-1\right)[/latex]
- [latex]y=1-{e}^{{\tan}^{-1}x}[/latex]
- [latex]y=\left(x+2\right)\text{ln}\left(\dfrac{x+2}{2}\right)[/latex]
- [latex]y=2{e}^{2\sqrt{x}}-2x - 2\sqrt{x}-1[/latex]
- [latex]v\left(t\right)=\dfrac{gm}{k}\left(1-{e}^{\dfrac{\text{-}kt}{m}}\right)[/latex]
- [latex]\sqrt{\dfrac{gm}{k}}[/latex]
- [latex]40.451[/latex] seconds
- [latex]y=C{e}^{x}-a\left(x+1\right)[/latex]
- [latex]y=C{e}^{\dfrac{{x}^{2}}{2}}-a[/latex]
- [latex]P=0[/latex] semi-stable
- [latex]P=\dfrac{10{e}^{10x}}{{e}^{10x}+4}[/latex]
- [latex]P\left(t\right)=\dfrac{10000{e}^{0.02t}}{150+50{e}^{0.02t}}[/latex]
- [latex]69[/latex] hours [latex]5[/latex] minutes
- [latex]8[/latex] years [latex]11[/latex] months
- [latex]y=\dfrac{-20}{4\times {10}^{-6}-0.002{e}^{0.01t}}[/latex]
- [latex]P\left(t\right)=\dfrac{850+500{e}^{0.009t}}{85+5{e}^{0.009t}}[/latex]
- [latex]13[/latex] years
- [latex]31.465[/latex] days
- September [latex]2008[/latex]
- [latex]\dfrac{K+T}{2}[/latex]
- [latex]r=0.0405[/latex]
- [latex]\alpha =0.0081[/latex]
- Logistic: [latex]361[/latex], Threshold: [latex]436[/latex], Gompertz: [latex]309[/latex].