Exponential and Logarithmic Functions: Get Stronger Answer Key

Exponential Functions

  1. exponential; the population decreases by a proportional rate.
  2. not exponential; the charge decreases by a constant amount each visit, so the statement represents a linear function.
  3. The forest represented by the function [latex]B(t)=82(1.029)^t[/latex].
  4. After [latex]t=20[/latex] years, forest A will have [latex]43[/latex] more trees than forest B.
  5. exponential growth: The growth factor, [latex]1.06[/latex], is greater than [latex]1[/latex].
  6. exponential decay: The decay factor, [latex]0.97[/latex], is between [latex]0[/latex] and [latex]1[/latex].
  7. [latex]f(x)=2000(0.1)^x[/latex]
  8. [latex]f(x)=(\dfrac{1}{6})^{-\frac{3}{5}}(\dfrac{1}{6})^{\frac{x}{5}}\approx 2.93(0.699)^x[/latex]
  9. Linear
  10. Neither
  11. Linear
  12. [latex]f(-1)=-4[/latex]
  13. [latex]f(-1)\approx -0.2707[/latex]
  14. [latex]f(3)\approx 483.8146[/latex]
  15. [latex]g(x)=4(3)^{-x}[/latex]; [latex]y[/latex]-intercept: [latex](0,4)[/latex]; Domain: all real numbers; Range: all real numbers greater than [latex]0[/latex].
  16. [latex]g(x)=-10^x+7[/latex]; [latex]y[/latex]-intercept: [latex](0,6)[/latex]; Domain: all real numbers; Range: all real numbers less than [latex]7[/latex].
  17. [latex]g(x)=2(\dfrac{1}{4})^x[/latex]; [latex]y[/latex]-intercept: [latex](0,2)[/latex]; Domain: all real numbers; Range: all real numbers greater than [latex]0[/latex].
  18. [latex]y[/latex]-intercept: [latex](0,-2)[/latex]
    Graph of two functions, g(-x)=-2(0.25)^(-x) in blue and g(x)=-2(0.25)^x in orange.
  19. Graph of three functions, g(x)=3(2)^(x) in blue, h(x)=3(4)^(x) in green, and f(x)=3(1/4)^(x) in orange.
  20. B
  21. A
  22. E
  23. D
  24. C
  25. [latex]f(x)=4^x-3[/latex]
  26. [latex]f(x)=4^{x-5}[/latex]
  27. [latex]f(x)=4^{-x}[/latex]
  28. [latex]y=-2^x+3[/latex]
  29. [latex]y=-2(3)^x+7[/latex]

Applications of Exponential Functions

  1. [latex]$10,250[/latex]
  2. [latex]$13,268.58[/latex]
  3. [latex]P=A(t)\cdot(1+\dfrac{r}{n})^{-nt}[/latex]
  4. [latex]$4,572.56[/latex]
  5. [latex]4 \%[/latex]
  6. continuous growth; the growth rate is greater than [latex]0[/latex].
  7. continuous decay; the growth rate is less than [latex]0[/latex].
  8. [latex]47,622[/latex] fox
  9. [latex]1.39 \%[/latex]; [latex]$155,368.09[/latex]
  10. [latex]$35,838.76[/latex]
  11. [latex]$82,247.78[/latex]; [latex]$449.75[/latex]

Logarithmic Functions

  1. [latex]a^c = b[/latex]
  2. [latex]x^y = 64[/latex]
  3. [latex]15^b = a[/latex]
  4. [latex]\log_c(k) = d[/latex]
  5. [latex]\log_{19}y = x[/latex]
  6. [latex]\log_n(103) = 4[/latex]
  7. [latex]\log_y(\dfrac{39}{100}) = x[/latex]
  8. [latex]x = 2^{-3} = \dfrac{1}{8}[/latex]
  9. [latex]x = 3^3 = 27[/latex]
  10. [latex]x = 9^{\frac{1}{2}} = 3[/latex]
  11. [latex]32[/latex]
  12. [latex]1.06[/latex]
  13. [latex]14.125[/latex]
  14. [latex]\dfrac{1}{2}[/latex]
  15. [latex]4[/latex]
  16. [latex]-3[/latex]
  17. [latex]-12[/latex]
  18. [latex]0[/latex]
  19. [latex]10[/latex]

Logarithmic Function Graphs and Characteristics

  1. Domain: [latex](-\infty,\dfrac{1}{2})[/latex]; Range: [latex](-\infty,\infty)[/latex]
  2. Domain: [latex](-\dfrac{17}{4},\infty)[/latex]; Range: [latex](-\infty,\infty)[/latex]
  3. Domain: [latex](5,\infty)[/latex]; Vertical asymptote: [latex]x=5[/latex]
  4. Domain: [latex](-\dfrac{1}{3},\infty)[/latex]; Vertical asymptote: [latex]x=-\dfrac{1}{3}[/latex]
  5. Domain: [latex](-3,\infty)[/latex]; Vertical asymptote: [latex]x=-3[/latex]
  6. Domain: [latex](1,\infty)[/latex]; Range: [latex](-\infty,\infty)[/latex]; Vertical asymptote: [latex]x=1[/latex]; [latex]x[/latex]-intercept: [latex](\dfrac{5}{4},0)[/latex]; [latex]y[/latex]-intercept: DNE
  7. Domain: [latex](-\infty,0)[/latex]; Range: [latex](-\infty,\infty)[/latex]; Vertical asymptote: [latex]x=0[/latex]; [latex]x[/latex]-intercept: [latex](-e^2,0)[/latex]; [latex]y[/latex]-intercept: DNE
  8. Domain: [latex](0,\infty)[/latex]; Range: [latex](-\infty,\infty)[/latex]; Vertical asymptote: [latex]x=0[/latex]; [latex]x[/latex]-intercept: [latex](e^3,0)[/latex]; [latex]y[/latex]-intercept: DNE
  9. B
  10. C
  11. B
  12. C
  13. Graph of two functions, g(x) = log_(1/2)(x) in orange and f(x)=log(x) in blue.
  14. Graph of two functions, g(x) = ln(1/2)(x) in orange and f(x)=e^(x) in blue.
  15. Graph of f(x)=log_2(x+2).
  16. Graph of f(x)=ln(-x).
  17. Graph of g(x)=log(6-3x)+1.
  18. [latex]f(x)=\log_2(-x-1)[/latex]
  19. [latex]f(x)=3\log_4(x+2)[/latex]