Skip to content
Parametric Curves and Their Applications: Get Stronger Answer Key
Fundamentals of Parametric Equations
orientation: bottom to top
orientation: left to right
Asymptotes are [latex]y=x[/latex] and [latex]y=\text{-}x[/latex]
[latex]y=\dfrac{\sqrt{x+1}}{2}[/latex]; domain: [latex]x\in \left[1,\infty \right)[/latex].
[latex]\dfrac{{x}^{2}}{16}+\dfrac{{y}^{2}}{9}=1[/latex]; domain [latex]x\in \left[-4,4\right][/latex].
[latex]y=3x+2[/latex]; domain: all real numbers.
[latex]{\left(x - 1\right)}^{2}+{\left(y - 3\right)}^{2}=1[/latex]; domain: [latex]x\in \left[0,2\right][/latex].
[latex]y=\sqrt{{x}^{2}-1}[/latex]; domain: [latex]x\in \left[-\infty,1\right][/latex].
[latex]{y}^{2}=\dfrac{1-x}{2}[/latex]; domain: [latex]x\in \left[2,\infty \right)\cup \left(\text{-}\infty ,-2\right][/latex].
[latex]y=\text{ln}x[/latex]; domain: [latex]x\in \left(1,\infty \right)[/latex].
[latex]y=\text{ln}x[/latex]; domain: [latex]x\in \left(0,\infty \right)[/latex].
[latex]{x}^{2}+{y}^{2}=4[/latex]; domain: [latex]x\in \left[-2,2\right][/latex].
line
parabola
circle
ellipse
hyperbola
The equations represent a cycloid.
Calculus with Parametric Curves
[latex]0[/latex]
[latex]\dfrac{-3}{5}[/latex]
[latex]\text{Slope}=0[/latex]; [latex]y=8[/latex].
Slope is undefined; [latex]x=2[/latex].
[latex]\tan{t}=\left(-2\right)[/latex] [latex]\left(\dfrac{4}{\sqrt{5}},\dfrac{-8}{\sqrt{5}}\right),\left(\dfrac{4}{\sqrt{5}},\dfrac{-8}{\sqrt{5}}\right)[/latex].
No points possible; undefined expression.
[latex]y=\text{-}\left(\dfrac{4}{e}\right)x+5[/latex]
[latex]y=-2x + 3[/latex]
[latex]\dfrac{\pi }{4},\dfrac{5\pi }{4},\dfrac{3\pi }{4},\dfrac{7\pi }{4}[/latex]
[latex]\dfrac{dy}{dx}=\text{-}\tan\left(t\right)[/latex]
[latex]\dfrac{dy}{dx}=\dfrac{3}{4}[/latex] and [latex]\dfrac{{d}^{2}y}{d{x}^{2}}=0[/latex], so the curve is neither concave up nor concave down at [latex]t=3[/latex]. Therefore the graph is linear and has a constant slope but no concavity.
[latex]\dfrac{dy}{dx}=4,\dfrac{{d}^{2}y}{d{x}^{2}}=-6\sqrt{3}[/latex]; the curve is concave down at [latex]\theta =\dfrac{\pi }{6}[/latex].
No horizontal tangents. Vertical tangents at [latex]\left(1,0\right),\left(-1,0\right)[/latex].
[latex]\text{-}{\sec}^{3}\left(\pi t\right)[/latex]
Horizontal [latex]\left(0,-9\right)[/latex]; vertical [latex]\left(\pm2,-6\right)[/latex].
[latex]1[/latex]
[latex]0[/latex]
[latex]4[/latex]
Concave up on [latex]t>0[/latex].
[latex]\dfrac{e\frac{1}{2}-1}{2}[/latex]
[latex]\dfrac{3\pi }{2}[/latex]
[latex]6\pi {a}^{2}[/latex]
[latex]2\pi ab[/latex]
[latex]\dfrac{1}{3}\left(2\sqrt{2}-1\right)[/latex]
[latex]7.075[/latex]
[latex]6a[/latex]
[latex]\dfrac{2\pi \left(247\sqrt{13}+64\right)}{1215}[/latex]
[latex]59.101[/latex]
[latex]\dfrac{8\pi }{3}\left(17\sqrt{17}-1\right)[/latex]
Previous/next navigation