Terms oscillate above and below [latex]\dfrac{5}{3}[/latex] and appear to converge to [latex]\dfrac{5}{3}[/latex].
Terms oscillate above and below [latex]y \approx 1.57 \ldots[/latex] and appear to converge to a limit.
Graph oscillates and suggests no limit.
[latex]7[/latex]
[latex]0[/latex]
[latex]0[/latex]
[latex]1[/latex]
bounded, decreasing for [latex]n \ge 1[/latex]
bounded, not monotone
bounded, decreasing
not monotone, not bounded
[latex]a_n[/latex] is decreasing and bounded below by [latex]2[/latex]. The limit [latex]a[/latex] must satisfy [latex]a = \sqrt{2a}[/latex] so [latex]a = 2[/latex], independent of the initial value.
[latex]0[/latex]
[latex]0: |\sin{x}| \le |x|[/latex] and [latex]|\sin{x}| \le 1[/latex] so [latex]-\dfrac{1}{n} \le a_n \le \dfrac{1}{n}[/latex]
[latex]n^{\dfrac{1}{n}} \to 1[/latex] and [latex]2^{\dfrac{1}{n}} \to 1[/latex], so [latex]a_n \to 0[/latex]
Since [latex]\left(1 + \dfrac{1}{n}\right)^n \to e[/latex], one has [latex]\left(1 - \dfrac{2}{n}\right)^n \approx \left(1 + k\right)^{-2k} \to e^{-2}[/latex] as [latex]k \to \infty[/latex].
[latex]2^n + 3^n \le 2 \cdot 3^n[/latex] and [latex]\dfrac{3^n}{4^n} \to 0[/latex] as [latex]n \to \infty[/latex], so [latex]a_n \to 0[/latex] as [latex]n \to \infty[/latex].
[latex]0[/latex]
[latex]\dfrac{a_{n+1}}{a_n} = \dfrac{n!}{(n+1)(n+2) \ldots (2n)} = \dfrac{1 \cdot 2 \cdot 3 \ldots n}{(n+1)(n+2) \ldots (2n)} < \dfrac{1}{2^n}[/latex]. In particular, [latex]\dfrac{a_{n+1}}{a_n} \le \dfrac{1}{2}[/latex], so [latex]a_n \to 0[/latex] as [latex]n \to \infty[/latex].
a. Without losses, the population would obey [latex]P_n = 1.06 P_{n-1}[/latex]. The subtraction of [latex]150[/latex] accounts for fish losses.
b. After [latex]12[/latex] months, we have [latex]P_{12} \approx 1494[/latex].
a. The student owes [latex]$9383[/latex] after [latex]12[/latex] months.
b. The loan will be paid in full after [latex]139[/latex] months or eleven and a half years.
[latex]{a}{n}={S}{n}-{S}_{n - 1}=\dfrac{1}{n - 1}-\dfrac{1}{n}[/latex]. Series converges to [latex]S=1[/latex].
[latex]{a}{n}={S}{n}-{S}_{n - 1}=\sqrt{n}-\sqrt{n - 1}=\dfrac{1}{\sqrt{n - 1}+\sqrt{n}}[/latex]. Series diverges because partial sums are unbounded.
[latex]{S}{1}=\dfrac{1}{3}[/latex], [latex]{S}{2}=\dfrac{1}{3}+\dfrac{2}{4}>\dfrac{1}{3}+\dfrac{1}{3}=\dfrac{2}{3}[/latex], [latex]{S}{3}=\dfrac{1}{3}+\dfrac{2}{4}+\dfrac{3}{5}>3\cdot \left(\dfrac{1}{3}\right)=1[/latex]. In general [latex]{S}{k}>\dfrac{k}{3}[/latex]. Series diverges.
[latex]\begin{array}{l}{S}{1}=\dfrac{1}{\left(2.3\right)}=\dfrac{1}{6}=\dfrac{2}{3} - \dfrac{1}{2},\hfill \\ {S}{2}=\dfrac{1}{\left(2.3\right)}+\dfrac{1}{\left(3.4\right)}=\dfrac{2}{12}+\dfrac{1}{12}=\dfrac{1}{4}=\dfrac{3}{4} - \dfrac{1}{2},\hfill \\ {S}{3}=\dfrac{1}{\left(2.3\right)}+\dfrac{1}{\left(3.4\right)}+\dfrac{1}{\left(4.5\right)}=\dfrac{10}{60}+\dfrac{5}{60}+\dfrac{3}{60}=\dfrac{3}{10}=\dfrac{4}{5} - \dfrac{1}{2},\hfill \\ {S}{4}=\dfrac{1}{\left(2.3\right)}+\dfrac{1}{\left(3.4\right)}+\dfrac{1}{\left(4.5\right)}+\dfrac{1}{\left(5.6\right)}=\dfrac{10}{60}+\dfrac{5}{60}+\dfrac{3}{60}+\dfrac{2}{60}=\dfrac{1}{3}=\dfrac{5}{6} - \dfrac{1}{2}.\hfill \end{array}[/latex]The pattern is [latex]{S}_{k}=\dfrac{\left(k+1\right)}{\left(k+2\right)}-\dfrac{1}{2}[/latex] and the series converges to [latex]\dfrac{1}{2}[/latex].
[latex]{a}{n}=\dfrac{1}{\text{ln}n}-\dfrac{1}{\text{ln}\left(n+1\right)}[/latex] and [latex]{S}{k}=\dfrac{1}{\text{ln}\left(2\right)}-\dfrac{1}{\text{ln}\left(k+1\right)}\to \dfrac{1}{\text{ln}\left(2\right)}[/latex]
[latex]{t}_{k}[/latex] converges to [latex]0.57721\text{⋯ }{t}_{k}[/latex] is a sum of rectangles of height [latex]\dfrac{1}{k}[/latex] over the interval [latex]\left[k,k+1\right][/latex] which lie above the graph of [latex]\dfrac{1}{x}[/latex].
a. The probability of any given ordered sequence of outcomes for [latex]n[/latex] coin flips is [latex]\dfrac{1}{{2}^{n}}[/latex]. b. The probability of coming up heads for the first time on the [latex]n[/latex] th flip is the probability of the sequence [latex]TT\text{$\ldots$ }TH[/latex] which is [latex]\dfrac{1}{{2}^{n}}[/latex]. The probability of coming up heads for the first time on an even flip is [latex]\displaystyle\sum _{n=1}^{\infty }\dfrac{1}{{2}^{2n}}[/latex] or [latex]\dfrac{1}{3}[/latex].
[latex]\dfrac{5}{9}[/latex]
The part of the first dose after [latex]n[/latex] hours is [latex]d{r}^{n}[/latex], the part of the second dose is [latex]d{r}^{n-N}[/latex], and, in general, the part remaining of the [latex]m\text{th}[/latex] dose is [latex]d{r}^{n-mN}[/latex], so [latex]A\left(n\right)=\displaystyle\sum _{l=0}^{m}d{r}^{n-lN}=\displaystyle\sum _{l=0}^{m}d{r}^{k+\left(m-l\right)N}=\displaystyle\sum _{q=0}^{m}d{r}^{k+qN}=d{r}^{k}\displaystyle\sum _{q=0}^{m}{r}^{Nq}=d{r}^{k}\dfrac{1-{r}^{\left(m+1\right)N}}{1-{r}^{N}},n=k+mN[/latex].
The Divergence and Integral Tests
[latex]\underset{n\to \infty }{\text{lim}}{a}_{n}=0[/latex]. Divergence test does not apply.
[latex]\underset{n\to \infty }{\text{lim}}{a}_{n}=2[/latex]. Series diverges.
[latex]\underset{n\to \infty }{\text{lim}}{a}_{n}=\infty[/latex] (does not exist). Series diverges.
[latex]\underset{n\to \infty }{\text{lim}}{a}_{n}=1[/latex]. Series diverges.
[latex]\underset{n\to \infty }{\text{lim}}{a}_{n}[/latex] does not exist. Series diverges.
[latex]\underset{n\to \infty }{\text{lim}}{a}_{n}=\dfrac{1}{{e}^{2}}[/latex]. Series diverges.
[latex]\underset{n\to \infty }{\text{lim}}{a}_{n}=0[/latex]. Divergence test does not apply.
Series converges, [latex]p>1[/latex].
Series converges, [latex]p=\dfrac{4}{3}>1[/latex].
Series converges, [latex]p=2e-\pi >1[/latex].
Series diverges by comparison with [latex]{\displaystyle\int }_{1}^{\infty }\dfrac{dx}{{\left(x+5\right)}^{\frac{1}{3}}}[/latex].
Series diverges by comparison with [latex]{\displaystyle\int }_{1}^{\infty }\dfrac{x}{1+{x}^{2}}dx[/latex].
Series converges by comparison with [latex]{\displaystyle\int }_{1}^{\infty }\dfrac{2x}{1+{x}^{4}}dx[/latex].
[latex]{2}^{\text{-}\text{ln}n}=\dfrac{1}{{n}^{\text{ln}2}}[/latex]. Since [latex]\text{ln}2<1[/latex], diverges by [latex]p[/latex] -series.
[latex]{2}^{-2\text{ln}n}=\dfrac{1}{{n}^{2\text{ln}2}}[/latex]. Since [latex]2\text{ln}2 - 1<1[/latex], diverges by [latex]p[/latex] -series.
[latex]{R}{N}<{\displaystyle\int }{N}^{\infty }\dfrac{dx}{{e}^{x}}={e}^{\text{-}N},N>5\text{ln}\left(10\right)[/latex], okay if [latex]N=12;\displaystyle\sum _{n=1}^{12}{e}^{\text{-}n}=0.581973...[/latex]. Estimate agrees with [latex]\dfrac{1}{\left(e - 1\right)}[/latex] to five decimal places.
[latex]{R}_{N}<{\displaystyle\int }_{N}^{\infty }\dfrac{dx}{{x}^{4}}=\dfrac{4}{{N}^{3}},N>{\left({4.10}^{4}\right)}^{\frac{1}{3}}[/latex], okay if [latex]N=35[/latex];[latex]\displaystyle\sum _{n=1}^{35}\dfrac{1}{{n}^{4}}=1.08231\text{...}[/latex]. Estimate agrees with the sum to four decimal places.
[latex]\text{ln}\left(2\right)[/latex]
[latex]T=0.5772..[/latex].
The expected number of random insertions to get [latex]B[/latex] to the top is [latex]n+\dfrac{n}{2}+\dfrac{n}{3}+\text{...}+\dfrac{n}{\left(n - 1\right)}[/latex]. Then one more insertion puts [latex]B[/latex] back in at random. Thus, the expected number of shuffles to randomize the deck is [latex]n\left(1+\dfrac{1}{2}+\text{...}+\dfrac{1}{n}\right)[/latex].
Set [latex]{b}{n}={a}{n+N}[/latex] and [latex]g\left(t\right)=f\left(t+N\right)[/latex] such that [latex]f[/latex] is decreasing on [latex]\left[t,\infty \right)[/latex].
The series converges for [latex]p>1[/latex] by integral test using change of variable.
[latex]N={e}^{{e}^{100}}\approx {e}^{{10}^{43}}[/latex] terms are needed.
Comparison Tests
Converges by comparison with [latex]\dfrac{1}{{n}^{2}}[/latex].
Diverges by comparison with harmonic series, since [latex]2n - 1\ge n[/latex].
[latex]{a}_{n}=\dfrac{1}{\left(n+1\right)\left(n+2\right)}<\dfrac{1}{{n}^{2}}[/latex]. Converges by comparison with p-series, [latex]p=2[/latex].
[latex]\sin\left(\dfrac{1}{n}\right)\le \dfrac{1}{n}[/latex], so converges by comparison with p-series, [latex]p=2[/latex].
[latex]\sin\left(\dfrac{1}{n}\right)\le 1[/latex], so converges by comparison with p-series, [latex]p=\dfrac{3}{2}[/latex].
Since [latex]\sqrt{n+1}-\sqrt{n}=\dfrac{1}{\left(\sqrt{n+1}+\sqrt{n}\right)}\le \dfrac{2}{\sqrt{n}}[/latex], series converges by comparison with p-series for [latex]p=1.5[/latex].
Converges by limit comparison with p-series for [latex]p>1[/latex].
Converges by limit comparison with p-series, [latex]p=2[/latex].
Converges by limit comparison with [latex]{4}^{\text{-}n}[/latex].
Converges by limit comparison with [latex]\dfrac{1}{{e}^{1.1n}}[/latex].
Diverges by limit comparison with harmonic series.
Converges by limit comparison with p-series, [latex]p=3[/latex].
Converges by limit comparison with p-series, [latex]p=3[/latex].
Diverges by limit comparison with [latex]\dfrac{1}{n}[/latex].
Converges for [latex]p>1[/latex] by comparison with a [latex]p[/latex] series for slightly smaller [latex]p[/latex].
Converges for all [latex]p>0[/latex].
Converges for all [latex]r>1[/latex]. If [latex]r>1[/latex] then [latex]{r}^{n}>4[/latex], say, once [latex]n>\dfrac{\text{ln}\left(2\right)}{\text{ln}\left(r\right)}[/latex] and then the series converges by limit comparison with a geometric series with ratio [latex]\dfrac{1}{2}[/latex].
The numerator is equal to [latex]1[/latex] when [latex]n[/latex] is odd and [latex]0[/latex] when [latex]n[/latex] is even, so the series can be rewritten [latex]\displaystyle\sum _{n=1}^{\infty }\dfrac{1}{2n+1}[/latex], which diverges by limit comparison with the harmonic series.
[latex]{\left(a-b\right)}^{2}={a}^{2}-2ab+{b}^{2}[/latex] or [latex]{a}^{2}+{b}^{2}\ge 2ab[/latex], so convergence follows from comparison of [latex]2{a}{n}{b}{n}[/latex] with [latex]{a}^{2}{}{n}+{b}^{2}{}{n}[/latex]. Since the partial sums on the left are bounded by those on the right, the inequality holds for the infinite series.
[latex]{\left(\text{ln}n\right)}^{\text{-}\text{ln}n}={e}^{\text{-}\text{ln}\left(n\right)\text{ln}\text{ln}\left(n\right)}[/latex]. If [latex]n[/latex] is sufficiently large, then [latex]\text{ln}\text{ln}n>2[/latex], so [latex]{\left(\text{ln}n\right)}^{\text{-}\text{ln}n}<\dfrac{1}{{n}^{2}}[/latex], and the series converges by comparison to a [latex]p-\text{series}\text{.}[/latex]
[latex]{a}{n}\to 0[/latex], so [latex]{a}^{2}{}{n}\le |{a}_{n}|[/latex] for large [latex]n[/latex]. Convergence follows from limit comparison. [latex]\displaystyle\sum \dfrac{1}{{n}^{2}}[/latex] converges, but [latex]\displaystyle\sum \dfrac{1}{n}[/latex] does not, so the fact that [latex]\displaystyle\sum {n=1}^{\infty }{a}^{2}{}{n}[/latex] converges does not imply that [latex]\displaystyle\sum {n=1}^{\infty }{a}{n}[/latex] converges.
No. [latex]\displaystyle\sum {n=1}^{\infty }\dfrac{1}{n}[/latex] diverges. Let [latex]{b}{k}=0[/latex] unless [latex]k={n}^{2}[/latex] for some [latex]n[/latex]. Then [latex]\displaystyle\sum {k}\dfrac{{b}{k}}{k}=\displaystyle\sum \dfrac{1}{{k}^{2}}[/latex] converges.
[latex]|\sin{t}|\le |t|[/latex], so the result follows from the comparison test.
By the comparison test, [latex]x=\displaystyle\sum {n=1}^{\infty }\dfrac{{b}{n}}{{2}^{n}}\le \displaystyle\sum _{n=1}^{\infty }\dfrac{1}{{2}^{n}}=1[/latex].
If [latex]{b}_{1}=0[/latex], then, by comparison, [latex]x\le \displaystyle\sum _{n=2}^{\infty }\dfrac{1}{{2}^{n}}=\dfrac{1}{2}[/latex].
Yes. Keep adding [latex]1\text{-kg}[/latex] weights until the balance tips to the side with the weights. If it balances perfectly, with Robert standing on the other side, stop. Otherwise, remove one of the [latex]1\text{-kg}[/latex] weights, and add [latex]0.1\text{-kg}[/latex] weights one at a time. If it balances after adding some of these, stop. Otherwise if it tips to the weights, remove the last [latex]0.1\text{-kg}[/latex] weight. Start adding [latex]0.01\text{-kg}[/latex] weights. If it balances, stop. If it tips to the side with the weights, remove the last [latex]0.01\text{-kg}[/latex] weight that was added. Continue in this way for the [latex]0.001\text{-kg}[/latex] weights, and so on. After a finite number of steps, one has a finite series of the form [latex]A+\displaystyle\sum {n=1}^{N}\dfrac{{s}{n}}{{10}^{n}}[/latex] where [latex]A[/latex] is the number of full kg weights and [latex]{d}_{n}[/latex] is the number of [latex]\dfrac{1}{{10}^{n}}\text{-kg}[/latex] weights that were added. If at some state this series is Robert’s exact weight, the process will stop. Otherwise it represents the [latex]N\text{th}[/latex] partial sum of an infinite series that gives Robert’s exact weight, and the error of this sum is at most [latex]\dfrac{1}{{10}^{N}}[/latex].
Alternating Series
Does not converge by divergence test. Terms do not tend to zero.
Converges conditionally by alternating series test, since [latex]\dfrac{\sqrt{n+3}}{n}[/latex] is decreasing. Does not converge absolutely by comparison with p-series, [latex]p=\dfrac{1}{2}[/latex].
Converges absolutely by limit comparison to [latex]\dfrac{{3}^{n}}{{4}^{n}}[/latex], for example.
Diverges by divergence test since [latex]\underset{n\to \infty }{\text{lim}}|{a}_{n}|=e[/latex].
Does not converge. Terms do not tend to zero.
[latex]\underset{n\to \infty }{\text{lim}}{\cos}^{2}\left(\dfrac{1}{n}\right)=1[/latex]. Diverges by divergence test.
Converges by alternating series test.
Converges conditionally by alternating series test. Does not converge absolutely by limit comparison with p-series, [latex]p=\pi -e[/latex]
Diverges; terms do not tend to zero.
Converges by alternating series test. Does not converge absolutely by limit comparison with harmonic series.
Converges absolutely by limit comparison with p-series, [latex]p=\dfrac{3}{2}[/latex], after applying the hint.
Converges by alternating series test since [latex]n\left({\tan}^{-1}\left(n+1\right)\text{-}{\tan}^{-1}n\right)[/latex] is decreasing to zero for large [latex]n[/latex]. Does not converge absolutely by limit comparison with harmonic series after applying hint.
Converges absolutely, since [latex]{a}_{n}=\dfrac{1}{n}-\dfrac{1}{n+1}[/latex] are terms of a telescoping series.
Terms do not tend to zero. Series diverges by divergence test.
Converges by alternating series test. Does not converge absolutely by limit comparison with harmonic series.
[latex]{2}^{N+1}>{10}^{6}[/latex] or [latex]N+1>\dfrac{6\text{ln}\left(10\right)}{\text{ln}\left(2\right)}=19.93[/latex]. or [latex]N\ge 19[/latex]; [latex]{S}_{19}=0.333333969\text{...}[/latex]
[latex]{\left(N+1\right)}^{2}>{10}^{6}[/latex] or [latex]N>999[/latex]; [latex]{S}_{1000}\approx 0.822466[/latex].
True. [latex]{b}{n}[/latex] need not tend to zero since if [latex]{c}{n}={b}{n}-\text{lim}{b}{n}[/latex], then [latex]{c}{2n - 1}-{c}{2n}={b}{2n - 1}-{b}{2n}[/latex].
True. [latex]{b}{3n - 1}-{b}{3n}\ge 0[/latex], so convergence of [latex]\displaystyle\sum {b}_{3n - 2}[/latex] follows from the comparison test.
True. If one converges, then so must the other, implying absolute convergence.
Yes. Take [latex]{b}{n}=1[/latex] if [latex]{a}{n}\ge 0[/latex] and [latex]{b}{n}=0[/latex] if [latex]{a}{n}<0[/latex]. Then [latex]\displaystyle\sum {n=1}^{\infty }{a}{n}{b}{n}=\displaystyle\sum {n:{a}{n}\ge 0}{a}{n}[/latex] converges. Similarly, one can show [latex]\displaystyle\sum {n:{a}{n}<0}{a}_{n}[/latex] converges. Since both series converge, the series must converge absolutely.
Not decreasing. Does not converge absolutely.
Not alternating. Can be expressed as [latex]\displaystyle\sum _{n=1}^{\infty }\left(\dfrac{1}{3n - 2}+\dfrac{1}{3n - 1}-\dfrac{1}{3n}\right)[/latex], which diverges by comparison with [latex]\displaystyle\sum \dfrac{1}{3n - 2}[/latex].
Let [latex]{a}^{+}{}{n}={a}{n}[/latex] if [latex]{a}{n}\ge 0[/latex] and [latex]{a}^{+}{}{n}=0[/latex] if [latex]{a}{n}<0[/latex]. Then [latex]{a}^{+}{}{n}\le |{a}{n}|[/latex] for all [latex]n[/latex] so the sequence of partial sums of [latex]{a}^{+}{}{n}[/latex] is increasing and bounded above by the sequence of partial sums of [latex]|{a}_{n}|[/latex], which converges; hence, [latex]\displaystyle\sum {n=1}^{\infty }{a}^{+}{}{n}[/latex] converges.
For [latex]N=5[/latex] one has [latex]|{R}{N}|{b}{6}=\dfrac{{\theta }^{10}}{10\text{!}}[/latex]. When [latex]\theta =1[/latex], [latex]{R}{5}\le \dfrac{1}{10\text{!}}\approx 2.75\times {10}^{-7}[/latex]. When [latex]\theta =\dfrac{\pi}{6}[/latex], [latex]{R}{5}\le {\left(\dfrac{\pi}{6}\right)}^\dfrac{{10}}{10\text{!}}\approx 4.26\times {10}^{-10}[/latex]. When [latex]\theta =\pi[/latex], [latex]{R}_{5}\le \dfrac{{\pi }^{10}}{10\text{!}}=0.0258[/latex].
Let [latex]{b}_{n}=\dfrac{1}{\left(2n - 2\right)}\text{!}[/latex]. Then [latex]{R}_{N}\le \dfrac{1}{\left(2N\right)\text{!}}<0.00001[/latex] when [latex]\left(2N\right)\text{!}>{10}^{5}[/latex] or [latex]N=5[/latex] and [latex]1-\dfrac{1}{2\text{!}}+\dfrac{1}{4\text{!}}-\dfrac{1}{6\text{!}}+\dfrac{1}{8\text{!}}=0.540325\text{...}[/latex], whereas [latex]\cos1=0.5403023\text{...}[/latex]
Let [latex]T=\displaystyle\sum \dfrac{1}{{n}^{2}}[/latex]. Then [latex]T-S=\dfrac{1}{2}T[/latex], so [latex]S=\dfrac{T}{2}[/latex]. [latex]\sqrt{6\times \displaystyle\sum _{n=1}^{1000}\dfrac{1}{{n}^{2}}}=3.140638\text{...}[/latex]; [latex]\sqrt{12\times \displaystyle\sum _{n=1}^{1000}\dfrac{{\left(-1\right)}^{n - 1}}{{n}^{2}}}=3.141591\text{...}[/latex]; [latex]\pi =3.141592\text{...}[/latex]. The alternating series is more accurate for [latex]1000[/latex] terms.
Converges by root test and limit comparison test since [latex]{x}_{n}\to \sqrt{2}[/latex].
Converges absolutely by limit comparison with [latex]p-\text{series,}[/latex] [latex]p=2[/latex].
[latex]\underset{n\to \infty }{\text{lim}}{a}_{n}=\dfrac{1}{{e}^{2}}\ne 0[/latex]. Series diverges.
Terms do not tend to zero: [latex]{a}_{k}\ge \dfrac{1}{2}[/latex], since [latex]{\sin}^{2}x\le 1[/latex].
[latex]{a}_{n}=\dfrac{2}{\left(n+1\right)\left(n+2\right)}[/latex], which converges by comparison with [latex]p-\text{series}[/latex] for [latex]p=2[/latex].
[latex]{a}_{k}=\dfrac{{2}^{k}1\cdot 2\text{...}k}{\left(2k+1\right)\left(2k+2\right)\text{...}3k}\le {\left(\dfrac{2}{3}\right)}^{k}[/latex] converges by comparison with geometric series.
[latex]{a}_{k}\approx {e}^{\text{-}\text{ln}{k}^{2}}=\dfrac{1}{{k}^{2}}[/latex]. Series converges by limit comparison with [latex]p-\text{series,}[/latex] [latex]p=2[/latex].
If [latex]{b}{k}=\dfrac{{c}^{1-k}}{\left(c - 1\right)}[/latex] and [latex]{a}{k}=k[/latex], then [latex]{b}{k+1}-{b}{k}=\text{-}{c}^{\text{-}k}[/latex] and [latex]\displaystyle\sum {n=1}^{\infty }\dfrac{k}{{c}^{k}}={a}{1}{b}_{1}+\dfrac{1}{c - 1}\displaystyle\sum _{k=1}^{\infty }{c}^{\text{-}k}=\dfrac{c}{{\left(c - 1\right)}^{2}}[/latex].
[latex]6+4+1=11[/latex]
[latex]|x|\le 1[/latex]
[latex]|x|<\infty[/latex]
All real numbers [latex]p[/latex] by the ratio test.
[latex]r<\dfrac{1}{p}[/latex]
[latex]0 < r < 1[/latex]. Note that the ratio and root tests are inconclusive. Using the hint, there are [latex]2k[/latex] terms [latex]{r}^{\sqrt{n}}[/latex] for [latex]{k}^{2}\le n<{\left(k+1\right)}^{2}[/latex], and for [latex]r<1[/latex] each term is at least [latex]{r}^{k}[/latex]. Thus, [latex]\displaystyle\sum _{n=1}^{\infty }{r}^{\sqrt{n}}=\displaystyle\sum _{k=1}^{\infty }\displaystyle\sum _{n={k}^{2}}^{{\left(k+1\right)}^{2}-1}{r}^{\sqrt{n}}[/latex] [latex]\ge \displaystyle\sum _{k=1}^{\infty }2k{r}^{k}[/latex], which converges by the ratio test for [latex]r<1[/latex]. For [latex]r\ge 1[/latex] the series diverges by the divergence test.
One has [latex]{a}_{1}=1[/latex], [latex]{a}_{2}={a}_{3}=\dfrac{1}{2}\text{...}{a}_{2n}={a}_{2n+1}=\dfrac{1}{{2}^{n}}[/latex]. The ratio test does not apply because [latex]\dfrac{{a}_{n+1}}{{a}_{n}}=1[/latex] if [latex]n[/latex] is even. However, [latex]\dfrac{{a}_{n+2}}{{a}_{n}}=\dfrac{1}{2}[/latex], so the series converges according to the previous exercise. Of course, the series is just a duplicated geometric series.