Numerical and Improper Integration: Get Stronger Answer Key

Numerical Integration Methods

  1. [latex]0.696[/latex]
  2. [latex]9.298[/latex]
  3. [latex]0.5000[/latex]
  4. [latex]{T}_{4}=18.75[/latex]
  5. [latex]0.500[/latex]
  6. [latex]1.2819[/latex]
  7. [latex]0.6577[/latex]
  8. [latex]0.0213[/latex]
  9. [latex]1.5629[/latex]
  10. [latex]1.9133[/latex]
  11. [latex]\text{T(4)}=0.1088[/latex]
  12. [latex]1.0[/latex]
  13. Approximate error is [latex]0.000325[/latex].
  14. [latex]0.1544[/latex]
  15. [latex]6.2807[/latex]
  16. [latex]4.606[/latex]
  17. [latex]3.41[/latex] ft
  18. [latex]{T}_{16}=100.125[/latex]; absolute error = [latex]0.125[/latex]
  19. about [latex]89,250[/latex] m2
  20. parabola

Error Analysis in Numerical Integration

  1. [latex]\dfrac{1}{7938}[/latex]
  2. [latex]\dfrac{81}{25,000}[/latex]
  3. [latex]475[/latex]
  4. [latex]174[/latex]

Improper Integrals

  1. divergent
  2. [latex]\dfrac{\pi }{2}[/latex]
  3. [latex]\dfrac{2}{e}[/latex]
  4. Converges
  5. Converges to [latex]\dfrac{1}{2}[/latex]
  6. [latex]−4[/latex]
  7. [latex]\pi[/latex]
  8. diverges
  9. diverges
  10. [latex]1.5[/latex]
  11. diverges
  12. diverges
  13. diverges
  14. Both integrals diverge.
  15. diverges
  16. diverges
  17. [latex]\pi[/latex]
  18. [latex]0.0[/latex]
  19. [latex]0.0[/latex]
  20. [latex]6.0[/latex]
  21. [latex]\dfrac{\pi }{2}[/latex]
  22. [latex]8\text{ln}\left(16\right)-4[/latex]
  23. [latex]1.047[/latex]
  24. [latex]-1+\dfrac{2}{\sqrt{3}}[/latex]
  25. [latex]7.0[/latex]
  26. [latex]\dfrac{5\pi }{2}[/latex]
  27. [latex]3\pi[/latex]
  28. [latex]\dfrac{1}{s},s>0[/latex]
  29. [latex]\dfrac{s}{{s}^{2}+4},s>0[/latex]