Skip to content
Numerical and Improper Integration: Get Stronger Answer Key
Numerical Integration Methods
- [latex]0.696[/latex]
- [latex]9.298[/latex]
- [latex]0.5000[/latex]
- [latex]{T}_{4}=18.75[/latex]
- [latex]0.500[/latex]
- [latex]1.2819[/latex]
- [latex]0.6577[/latex]
- [latex]0.0213[/latex]
- [latex]1.5629[/latex]
- [latex]1.9133[/latex]
- [latex]\text{T(4)}=0.1088[/latex]
- [latex]1.0[/latex]
- Approximate error is [latex]0.000325[/latex].
- [latex]0.1544[/latex]
- [latex]6.2807[/latex]
- [latex]4.606[/latex]
- [latex]3.41[/latex] ft
- [latex]{T}_{16}=100.125[/latex]; absolute error = [latex]0.125[/latex]
- about [latex]89,250[/latex] m2
- parabola
Error Analysis in Numerical Integration
- [latex]\dfrac{1}{7938}[/latex]
- [latex]\dfrac{81}{25,000}[/latex]
- [latex]475[/latex]
- [latex]174[/latex]
Improper Integrals
- divergent
- [latex]\dfrac{\pi }{2}[/latex]
- [latex]\dfrac{2}{e}[/latex]
- Converges
- Converges to [latex]\dfrac{1}{2}[/latex]
- [latex]−4[/latex]
- [latex]\pi[/latex]
- diverges
- diverges
- [latex]1.5[/latex]
- diverges
- diverges
- diverges
- Both integrals diverge.
- diverges
- diverges
- [latex]\pi[/latex]
- [latex]0.0[/latex]
- [latex]0.0[/latex]
- [latex]6.0[/latex]
- [latex]\dfrac{\pi }{2}[/latex]
- [latex]8\text{ln}\left(16\right)-4[/latex]
- [latex]1.047[/latex]
- [latex]-1+\dfrac{2}{\sqrt{3}}[/latex]
- [latex]7.0[/latex]
- [latex]\dfrac{5\pi }{2}[/latex]
- [latex]3\pi[/latex]
- [latex]\dfrac{1}{s},s>0[/latex]
- [latex]\dfrac{s}{{s}^{2}+4},s>0[/latex]