[latex]A(t)=\pi(25\sqrt{t}+2)^2[/latex] and [latex]A(2)=\pi(25\sqrt{4})^2=2500\pi[/latex] square inches
[latex]A(5)=\pi(2(5)+1)^2=121\pi[/latex] square units
[latex]N(T(t))=23(5t+1.5)^2-56(5t+1.5)+1[/latex]
[latex]3.38[/latex] hours
Transformations of Functions
[latex]g(x)=|x-1|-3[/latex]
[latex]g(x)=\dfrac{1}{(x+4)^2}+2[/latex]
The graph of [latex]f(x+43)[/latex] is a horizontal shift to the left [latex]43[/latex] units of the graph of [latex]f[/latex].
The graph of [latex]f(x-4)[/latex] is a horizontal shift to the right [latex]4[/latex] units of the graph of [latex]f[/latex].
The graph of [latex]f(x)+8[/latex] is a vertical shift up [latex]8[/latex] units of the graph of [latex]f[/latex].
The graph of [latex]f(x)-7[/latex] is a vertical shift down [latex]7[/latex] units of the graph of [latex]f[/latex].
The graph of [latex]f(x+4)-1[/latex] is a horizontal shift to the left [latex]4[/latex] units and a vertical shift down [latex]1[/latex] unit of the graph of [latex]f[/latex].
decreasing on latex](-\infty,-3)[/latex] and increasing on latex](-3,\infty)[/latex]
The graph of [latex]g[/latex] is a vertical reflection (across the x-axis) of the graph of [latex]f[/latex].
The graph of [latex]g[/latex] is a vertical stretch by a factor of [latex]4[/latex] of the graph of [latex]f[/latex].
The graph of [latex]g[/latex] is a horizontal compression by a factor of [latex]\dfrac{1}{5}[/latex] of the graph of [latex]f[/latex].
The graph of [latex]g[/latex] is a horizontal stretch by a factor of [latex]3[/latex] of the graph of [latex]f[/latex].
The graph of [latex]g[/latex] is a horizontal reflection across the [latex]y[/latex]-axis and a vertical stretch by a factor of [latex]3[/latex] of the graph of [latex]f[/latex].
[latex]g(x)=|-4x|[/latex]
[latex]g(x)=-\dfrac{1}{3(x+2)^2}-3[/latex]
[latex]g(x)=\dfrac{1}{2}(x-5)^2+1[/latex]
The graph of the function [latex]f(x)=x^2[/latex] is shifted to the left [latex]1[/latex] unit, stretched vertically by a factor of [latex]4[/latex], and shifted down [latex]5[/latex] units.
The graph of [latex]f(x)=|x|[/latex] is stretched vertically by a factor of [latex]2[/latex], shifted horizontally [latex]4[/latex] units to the right, reflected across the horizontal axis, and then shifted vertically [latex]3[/latex] units up.
The graph of the function [latex]f(x)=x^3[/latex] is compressed vertically by a factor of [latex]\dfrac{1}{2}[/latex].
The graph of the function is stretched horizontally by a factor of [latex]3[/latex] and then shifted vertically downward by [latex]3[/latex] units.
The graph of [latex]f(x)=\sqrt{x}[/latex] is shifted right [latex]4[/latex] units and then reflected across the vertical line [latex]x=4[/latex].
Inverse Functions
[latex]f^{-1}(x)=x-3[/latex]
[latex]f^{-1}(x)=2-x[/latex]
[latex]f^{-1}(x)=\dfrac{-2x}{x-1}[/latex]
domain of [latex]f(x):[−7,\infty)[/latex]; [latex]f^{-1}(x)=\sqrt{x}-7[/latex]
domain of [latex]f(x):[0,\infty)[/latex]; [latex]f^{-1}(x)=\sqrt{x+5}[/latex]
[latex]f^{-1}(x)=\dfrac{5}{9}(x-32)[/latex]. Given the Fahrenheit temperature, [latex]x[/latex], this formula allows you to calculate the Celsius temperature.
[latex]t(d)=\dfrac{d}{50}[/latex], [latex]t(180)=\dfrac{180}{50}[/latex]. The time for the car to travel [latex]180[/latex] miles is [latex]3.6[/latex] hours.