Polynomial Basics
For the following exercises, identify the degree of the polynomial.
- [latex]7x - 2x^2 + 13[/latex]
- [latex]-625a^8 + 16b^4[/latex]
- [latex]x^2 + 4x + 4[/latex]
For the following exercises, find the sum or difference.
- [latex](12x^2 + 3x) - (8x^2 - 19)[/latex]
- [latex](6w^2 + 24w + 24) - (3w^2 - 6w + 3)[/latex]
- [latex](11b^4 - 6b^3 + 18b^2 - 4b + 8) - (3b^3 + 6b^2 + 3b)[/latex]
For the following exercises, find the product.
- [latex](4x + 2)(6x - 4)[/latex]
- [latex](6b^2 - 6)(4b^2 - 4)[/latex]
- [latex](9v - 11)(11v - 9)[/latex]
- [latex](8n - 4)(n^2 + 9)[/latex]
For the following exercises, expand the binomial.
- [latex](3y - 7)^2[/latex]
- [latex](4p + 9)^2[/latex]
- [latex](3y - 6)^2[/latex]
For the following exercises, multiply the binomials.
- [latex](4c + 1)(4c - 1)[/latex]
- [latex](15n - 6)(15n + 6)[/latex]
- [latex](4 + 4m)(4 - 4m)[/latex]
- [latex](11q - 10)(11q + 10)[/latex]
For the following exercises, multiply the polynomials.
- [latex](4t^2 + t - 7)(4t^2 - 1)[/latex]
- [latex](y-2)(y^2 - 4y -9)[/latex]
- [latex](3p^2 + 2p - 10)(p - 1)[/latex]
- [latex](a+b)(a-b)[/latex]
- [latex](4t - 5u)^2[/latex]
- [latex](4t - x)(t - x + 1)[/latex]
- [latex](4r - d)(6r + 7d)[/latex]
Factoring Polynomials
For the following exercises, find the greatest common factor.
- [latex]49mb^2 - 35m^2ba + 77ma^2[/latex]
- [latex]200p^3m^3 - 30p^2m^3 + 40m^3[/latex]
- [latex]6y^4 - 2y^3 + 3y^2 - y[/latex]
For the following exercises, factor by grouping.
- [latex]2a^2 + 9a - 18[/latex]
- [latex]6n^2 - 19n - 11[/latex]
- [latex]2p^2 - 5p - 7[/latex]
For the following exercises, factor the polynomial.
- [latex]10h^2 - 9h - 9[/latex]
- [latex]9d^2 - 73d + 8[/latex]
- [latex]12t^2 + t - 13[/latex]
- [latex]16x^2 - 100[/latex]
- [latex]121p^2 - 169[/latex]
- [latex]361d^2 - 81[/latex]
- [latex]144b^2 - 25c^2[/latex]
- [latex]49n^2 + 168n + 144[/latex]
- [latex]225y^2 + 120y + 16[/latex]
- [latex]25p^2 - 120p + 144[/latex]
For the following exercises, factor the polynomials.
- [latex]x^3 + 216[/latex]
- [latex]125a^3 + 343[/latex]
- [latex]64x^3 - 125[/latex]
- [latex]125r^3 + 1,728s^3[/latex]
- [latex]3c(2c + 3)^{-\frac{1}{4}} - 5(2c + 3)^{\frac{3}{4}}[/latex]
- [latex]14x(x + 2)^{-\frac{2}{5}} + 5(x + 2)^{\frac{3}{5}}[/latex]
- [latex]5z(2z - 9)^{-\frac{3}{2}} + 11(2z - 9)^{-\frac{1}{2}}[/latex]
For the following exercises, consider this scenario:
Charlotte has appointed a chairperson to lead a city beautification project. The first act is to install statues and fountains in one of the city’s parks. The park is a rectangle with an area of [latex]98x^2 + 105x − 27m^2[/latex], as shown in the figure below. The length and width of the park are perfect factors of the area.
- Factor by grouping to find the length and width of the park.
- A statue is to be placed in the center of the park. The area of the base of the statue is [latex]4x^2 + 12x + 9 m^2[/latex]. Factor the area to find the lengths of the sides of the statue.
- At the northwest corner of the park, the city is going to install a fountain. The area of the base of the fountain is [latex]9x^2 − 25 m^2[/latex]. Factor the area to find the lengths of the sides of the fountain.
Rational Expressions
For the following exercises, simplify the rational expressions.
- [latex]\frac{y^2 + 10y + 25}{y^2 + 11y + 30}[/latex]
- [latex]\frac{9b^2 + 18b + 9}{3b + 3}[/latex]
- [latex]\frac{2x^2 + 7x - 4}{4x^2 + 2x - 2}[/latex]
- [latex]\frac{a^2 + 9a + 18}{a^2 + 3a - 18}[/latex]
- [latex]\frac{12n^2 - 29n - 8}{28n^2 - 5n - 3}[/latex]
For the following exercises, multiply the rational expressions and express the product in simplest form.
- [latex]\frac{c^2 + 2c - 24}{c^2 + 12c + 36} \cdot \frac{c^2 - 10c + 24}{c^2 - 8c + 16}[/latex]
- [latex]\frac{10h^2 - 9h - 9}{2h^2 - 19h + 24} \cdot \frac{h^2 - 16h + 64}{5h^2 - 37h + 72}[/latex]
- [latex]\frac{2d^2 + 15d + 25}{4d^2 - 25} \cdot \frac{2d^2 - 15d + 25}{25d^2 - 1}[/latex]
- [latex]\frac{t^2 - 1}{t^2 + 4t + 3} \cdot \frac{t^2 + 2t - 15}{t^2 - 4t + 3}[/latex]
- [latex]\frac{36x^2 - 25}{6x^2 + 65x + 50} \cdot \frac{3x^2 + 32x + 20}{18x^2 + 27x + 10}[/latex]
For the following exercises, divide the rational expressions.
- [latex]\frac{6p^2 + p - 12}{8p^2 + 18p + 9} \div \frac{6p^2 - 11p + 4}{2p^2 + 11p - 6}[/latex]
- [latex]\frac{18d^2 + 77d - 18}{27d^2 - 15d + 2} \div \frac{3d^2 + 29d - 44}{9d^2 - 15d + 4}[/latex]
- [latex]\frac{144b^2 - 25}{72b^2 - 6b - 10} \div \frac{18b^2 - 21b + 5}{36b^2 - 18b - 10}[/latex]
- [latex]\frac{22y^2 + 59y + 10}{12y^2 + 28y - 5} \div \frac{11y^2 + 46y + 8}{24y^2 - 10y + 1}[/latex]
For the following exercises, add and subtract the rational expressions, and then simplify.
- [latex]\frac{4}{x} + \frac{10}{y}[/latex]
- [latex]\frac{4}{a + 1} + \frac{5}{a - 3}[/latex]
- [latex]\frac{y + 3}{y - 2} + \frac{y - 3}{y + 1}[/latex]
- [latex]\frac{3z}{z + 1} + \frac{2z + 5}{z - 2}[/latex]
- [latex]\frac{x}{x + 1} + \frac{y}{y + 1}[/latex]
For the following exercises, simplify the rational expression.
- [latex]\frac{\frac{2}{a} + \frac{7}{b}}{b}[/latex]
- [latex]\frac{\frac{3}{a} + \frac{b}{6}}{\frac{2b}{3a}}[/latex]
- [latex]\frac{\frac{a}{b} - \frac{b}{a}}{ab}[/latex]
- [latex]\frac{\frac{2c}{c + 2} + \frac{c - 1}{c + 1}}{\frac{2c + 1}{c + 1}}[/latex]
- Brenda is placing tile on her bathroom floor. The area of the floor is [latex]15x^2 - 8x - 7 \, \text{ft}^2[/latex]. The area of one tile is [latex]x^2 - 2x + 1 \, \text{ft}^2[/latex]. To find the number of tiles needed, simplify the rational expression: [latex]\frac{15x^2 - 8x - 7}{x^2 - 2x + 1}[/latex].
- Elroi wants to mulch his garden. His garden is [latex]x^2 + 18x + 81 \, \text{ft}^2[/latex]. One bag of mulch covers [latex]x^2 - 81 \, \text{ft}^2[/latex]. Divide the expressions and simplify to find how many bags of mulch Elroi needs to mulch his garden.