A relation is a set of ordered pairs. A function is a special kind of relation in which no two ordered pairs have the same first coordinate.
When a vertical line intersects the graph of a relation more than once, that indicates that for that input there is more than one output. At any particular input value, there can be only one output if the relation is to be a function.
When a horizontal line intersects the graph of a function more than once, that indicates that for that output there is more than one input. A function is one-to-one if each output corresponds to only one input.
Line 1: [latex]m = –10[/latex]; Line 2: [latex]m = –10[/latex]
Line 1: [latex]m = –2[/latex]; Line 2: [latex]m = 1[/latex]
Line 1: [latex]m=–2[/latex]; Line 2: [latex]m=–2[/latex]
[latex]y=3x−3[/latex]
[latex]y=−\frac{1}{3}t 2[/latex]
[latex]0[/latex]
[latex]y=−\frac{5}{4}x 5[/latex]
[latex]y=3x−1[/latex]
[latex]y=−2.5[/latex]
F
C
A
[latex]y=3[/latex]
[latex]x=−3[/latex]
Linear, [latex]g(x)=−3x 5[/latex]
Linear, [latex]f(x)=5x−5[/latex]
[latex]f(x)=−58x 17.3[/latex]
[latex]a=11,900,b=1000.1[/latex]
[latex]q(p)=1000p–100[/latex]
[latex]$45[/latex] per training session.
The rate of change is [latex]0.1[/latex]. For every additional minute talked, the monthly charge increases by [latex]$0.1[/latex] or [latex]10[/latex] cents. The initial value is [latex]24[/latex]. When there are no minutes used, initially the charge is [latex]$24[/latex].
The slope is [latex]–400[/latex]. this means for every year between 1960 and 1989, the population dropped by [latex]400[/latex] per year in the city.
C
Quadratic Functions
When written in that form, the vertex can be easily identified.
If [latex]a=0[/latex] then the function becomes a linear function.
If possible, we can use factoring. Otherwise, we can use the quadratic formula.
Vertex: [latex](\frac{3}{2},−12)[/latex], axis of symmetry: [latex]x=\frac{3}{2}[/latex], intercept: [latex]( \frac{3+2\sqrt{3}}{2},0)[/latex] and [latex]( \frac{3-2\sqrt{3}}{2},0)[/latex]
[latex]f(x)=x^2+2x+3[/latex]
[latex]f(x)=−3x^2−6x−1[/latex]
[latex]f(x)=x^2+2x+1[/latex]
[latex]f(x)=−x^2+2x[/latex]
Power Functions and Polynomial Functions
The coefficient of the power function is the real number that is multiplied by the variable raised to a power. The degree is the highest power appearing in the function.
As [latex]x[/latex] decreases without bound, so does [latex]f(x)[/latex]. As [latex]x[/latex] increases without bound, so does [latex]f(x)[/latex].
The polynomial function is of even degree and leading coefficient is negative.
As [latex]x→∞[/latex], [latex]f(x)→∞[/latex], as [latex]x→−∞[/latex], [latex]f(x)→∞[/latex]
As [latex]x→−∞[/latex], [latex]f(x)→−∞[/latex], as [latex]x→∞[/latex], [latex]f(x)→−∞[/latex]
As [latex]x→−∞[/latex], [latex]f(x)→−∞[/latex], as [latex]x→∞[/latex], [latex]f(x)→−∞[/latex]
[latex]y[/latex]-intercept is [latex](0,12)[/latex], [latex]t[/latex]-intercepts are [latex](1,0)[/latex]; [latex](–2,0)[/latex]; and [latex](3,0)[/latex].
[latex]y[/latex]-intercept is [latex](0,−16)[/latex]. [latex]x[/latex]-intercepts are [latex](2,0)[/latex] and [latex](−2,0)[/latex].
[latex]y[/latex]-intercept is [latex](0,0)[/latex]. [latex]x[/latex]-intercepts are [latex](0,0)[/latex], [latex](4,0)[/latex], and [latex](−2, 0)[/latex].
3
5
3
Yes. Number of turning points is [latex]2[/latex]. Least possible degree is [latex]3[/latex].
Yes. Number of turning points is [latex]1[/latex]. Least possible degree is [latex]2[/latex].
Graphs of Polynomial Functions
The [latex]x[/latex]-intercept is where the graph of the function crosses the [latex]x[/latex]-axis, and the zero of the function is the input value for which [latex]f(x)=0[/latex].
If we evaluate the function at [latex]a[/latex] and at [latex]b[/latex] and the sign of the function value changes, then we know a zero exists between [latex]a[/latex] and [latex]b[/latex].
There will be a factor raised to an even power.
[latex](−2,0), (3,0), (−5,0)[/latex]
[latex](3,0), (−1,0), (0,0)[/latex]
[latex](0,0), (−5,0), (2,0)[/latex]
[latex](0,0),(−5,0),(4,0)[/latex]
[latex]f(2)=–10[/latex] and [latex]f(4)=28[/latex]. Sign change confirms.
[latex]f(1)=3[/latex] and [latex]f(3)=–77[/latex]. Sign change confirms.
[latex]f(0.01)=1.000001[/latex] and [latex]f(0.1)=–7.999[/latex]. Sign change confirms.
[latex]0[/latex] with multiplicity [latex]2[/latex], [latex]−\frac{3}{2}[/latex] with multiplicity [latex]5[/latex], [latex]4[/latex] with multiplicity [latex]2[/latex]
[latex]0[/latex] with multiplicity [latex]2[/latex], [latex]–2[/latex] with multiplicity [latex]2[/latex]
[latex]−\frac{2}{3}[/latex] with multiplicity [latex]5[/latex], [latex]5[/latex] with multiplicity [latex]2[/latex]
[latex]x[/latex]-intercepts, [latex](1, 0)[/latex] with multiplicity [latex]2[/latex], [latex](–4, 0)[/latex] with multiplicity [latex]1[/latex], [latex]y[/latex]-intercept [latex](0, 4)[/latex]. As [latex]x→−∞[/latex], [latex]f(x)→−∞[/latex], as [latex]x→∞[/latex], [latex]f(x)→∞[/latex].
[latex]x[/latex]-intercepts [latex](3,0)[/latex] with multiplicity [latex]3[/latex], [latex](2,0)[/latex] with multiplicity [latex]2[/latex], [latex]y[/latex]-intercept [latex](0,–108)[/latex]. As [latex]x→−∞[/latex], [latex]f(x)→−∞[/latex], as [latex]x→∞[/latex], [latex]f(x)→∞[/latex].
[latex]x[/latex]-intercepts [latex](0, 0)[/latex], [latex](–2, 0),(4,0)[/latex] with multiplicity [latex]1[/latex], [latex]y[/latex]-intercept [latex](0, 0)[/latex]. As [latex]x→−∞[/latex], [latex]f(x)→∞[/latex], as [latex]x→∞[/latex], [latex]f(x)→−∞[/latex].
[latex]f(x)=−\frac{2}{9}(x−3)(x+1)(x+3)[/latex]
[latex]f(x)=\frac{1}{4}(x+2)^2(x−3)[/latex]
latex]–4, –2, 1, 3[/latex] with multiplicity [latex]1[/latex]
[latex]–2, 3[/latex] each with multiplicity [latex]2[/latex]