Transformations of Functions: Learn It 3

Graphing Functions Using Reflections about the Axes

Another transformation that can be applied to a function is a reflection over the [latex]x[/latex]– or [latex]y[/latex]-axis. A vertical reflection reflects a graph vertically across the [latex]x[/latex]-axis, while a horizontal reflection reflects a graph horizontally across the [latex]y[/latex]-axis.

Graph of the vertical and horizontal reflection of a function.

Notice that the vertical reflection produces a new graph that is a mirror image of the base or original graph about the [latex]x[/latex]-axis. The horizontal reflection produces a new graph that is a mirror image of the base or original graph about the [latex]y[/latex]-axis.

reflections

A vertical reflection reflects a graph vertically across the [latex]x[/latex]-axis. This transformation changes the sign of the output values of [latex]f(x)[/latex].

  • If you reflect the graph of a function [latex]f(x)[/latex] over the [latex]x[/latex]-axis, the new function [latex]g(x)[/latex] is given by:

[latex]g(x) = -f(x)[/latex]

 

A horizontal reflection reflects a graph horizontally across the [latex]y[/latex]-axis. This transformation changes the sign of the input values of [latex]f(x)[/latex].

  • If you reflect the graph of a function [latex]f(x)[/latex] over the [latex]y[/latex]-axis, the new function [latex]g(x)[/latex] is given by:

[latex]g(x) = f(-x)[/latex]

How To: Given a function, reflect the graph both vertically and horizontally.

  1. Multiply all outputs by –1 for a vertical reflection. The new graph is a reflection of the original graph about the [latex]x[/latex]-axis.
  2. Multiply all inputs by –1 for a horizontal reflection. The new graph is a reflection of the original graph about the [latex]y[/latex]-axis.
Reflect the graph of [latex]s\left(t\right)=\sqrt{t}[/latex]

  1. vertically
  2. horizontally

A function [latex]f\left(x\right)[/latex] is given. Create a table for the functions below.

  1. [latex]g\left(x\right)=-f\left(x\right)[/latex]
  2. [latex]h\left(x\right)=f\left(-x\right)[/latex]
[latex]x[/latex] [latex]2[/latex] [latex]4[/latex] [latex]6[/latex] [latex]8[/latex]
[latex]f\left(x\right)[/latex] [latex]1[/latex] [latex]3[/latex] [latex]7[/latex] [latex]11[/latex]