Solving a System of Three Equations in Three Variables by Elimination
Solving a system with three variables is very similar to solving one with two variables. It is important to keep track of your work as the addition of one more equation creates more steps in the solution process.
- Write the equations in standard form. If any coefficients are fractions, clear them.
- Eliminate the same variable from two equations.
- Decide which variable you will eliminate.
- Work with a pair of equations to eliminate the chosen variable.
- Multiply one or both equations so that the coefficients of that variable are opposites.
- Add the equations resulting from Step 2 to eliminate one variable.
- Repeat Step 2 using two other equations and eliminate the same variable as in Step 2.
- The two new equations form a system of two equations with two variables. Solve this system.
- Use the values of the two variables found in Step 4 to find the third variable.
- Write the solution as an ordered triple.
- Check that the ordered triple is a solution to all three original equations
[latex]\begin{array}{lll}x-y+z=5\,\,\,\,(1)\\-2y+z=6\,\,\,\,(2)\\2y-2z=-12\,\,\,\,(3)\end{array}[/latex]
[latex]\begin{align}x - 2y+3z=9& &\text{(1)} \\ -x+3y-z=-6& &\text{(2)} \\ 2x - 5y+5z=17& &\text{(3)} \end{align}[/latex]