Rates of Change and Behavior of Graphs: Learn It 3

Behaviors of Functions Cont.

Analyzing the Toolkit Functions for Increasing or Decreasing Intervals

We will now return to our toolkit functions and discuss their graphical behavior in the table below.

Function Increasing/Decreasing Example
Constant Function[latex]f\left(x\right)={c}[/latex] Neither increasing nor decreasing
Identity Function[latex]f\left(x\right)={x}[/latex]  Increasing
Quadratic Function[latex]f\left(x\right)={x}^{2}[/latex] Increasing on [latex]\left(0,\infty\right)[/latex]Decreasing on [latex]\left(-\infty,0\right)[/latex]

Minimum at [latex]x=0[/latex]

Cubic Function[latex]f\left(x\right)={x}^{3}[/latex] Increasing
 Reciprocal[latex]f\left(x\right)=\frac{1}{x}[/latex] Decreasing [latex]\left(-\infty,0\right)\cup\left(0,\infty\right)[/latex]
Reciprocal Squared[latex]f\left(x\right)=\frac{1}{{x}^{2}}[/latex] Increasing on [latex]\left(-\infty,0\right)[/latex]Decreasing on [latex]\left(0,\infty\right)[/latex]
Cube Root[latex]f\left(x\right)=\sqrt[3]{x}[/latex] Increasing Screen Shot 2015-08-20 at 8.53.26 AM
Square Root[latex]f\left(x\right)=\sqrt{x}[/latex] Increasing on [latex]\left(0,\infty\right)[/latex]
Absolute Value[latex]f\left(x\right)=|x|[/latex] Increasing on [latex]\left(0,\infty\right)[/latex]Decreasing on [latex]\left(-\infty,0\right)[/latex]

Minimum at [latex]x=0[/latex]