Rates of Change and Behavior of Graphs: Learn It 3

Behaviors of Functions Cont.

Analyzing the Toolkit Functions for Increasing or Decreasing Intervals

We will now return to our toolkit functions and discuss their graphical behavior in the table below.

Function Increasing/Decreasing Example
Constant Function[latex]f\left(x\right)={c}[/latex] Neither increasing nor decreasing
Constant function
Identity Function[latex]f\left(x\right)={x}[/latex]  Increasing
Identity Function
Quadratic Function[latex]f\left(x\right)={x}^{2}[/latex] Increasing on [latex]\left(0,\infty\right)[/latex]Decreasing on [latex]\left(-\infty,0\right)[/latex]

Minimum at [latex]x=0[/latex]

Quadratic function
Quadratic function
Cubic Function[latex]f\left(x\right)={x}^{3}[/latex] Increasing
Cubic function
 Reciprocal[latex]f\left(x\right)=\frac{1}{x}[/latex] Decreasing [latex]\left(-\infty,0\right)\cup\left(0,\infty\right)[/latex]
Reciprocal function
Reciprocal Squared[latex]f\left(x\right)=\frac{1}{{x}^{2}}[/latex] Increasing on [latex]\left(-\infty,0\right)[/latex]Decreasing on [latex]\left(0,\infty\right)[/latex]
Reciprocal squared function
Cube Root[latex]f\left(x\right)=\sqrt[3]{x}[/latex] Increasing
Screen Shot 2015-08-20 at 8.53.26 AM
Cube root function
Square Root[latex]f\left(x\right)=\sqrt{x}[/latex] Increasing on [latex]\left(0,\infty\right)[/latex]
Square root function
Absolute Value[latex]f\left(x\right)=|x|[/latex] Increasing on [latex]\left(0,\infty\right)[/latex]Decreasing on [latex]\left(-\infty,0\right)[/latex]

Minimum at [latex]x=0[/latex]

Absolute value function