Solving Real-world Applications of Polynomial Equations
We have now introduced a variety of tools for solving polynomial equations.
A new bakery offers decorated sheet cakes for children’s birthday parties and other special occasions. The bakery wants the volume of a small cake to be 351 cubic inches. The cake is in the shape of a rectangular solid. They want the length of the cake to be four inches longer than the width of the cake and the height of the cake to be one-third of the width. What should the dimensions of the cake pan be?
Begin by writing an equation for the volume of the cake. The volume of a rectangular solid is given by [latex]V=lwh[/latex]. We were given that the length must be four inches longer than the width, so we can express the length of the cake as [latex]l=w+4[/latex]. We were given that the height of the cake is one-third of the width, so we can express the height of the cake as [latex]h=\frac{1}{3}w[/latex]. Let’s write the volume of the cake in terms of width of the cake.
[latex]\begin{array}{l}\text{ }351=\frac{1}{3}{w}^{3}+\frac{4}{3}{w}^{2}\hfill & \text{Substitute 351 for }V.\hfill \\ 1053={w}^{3}+4{w}^{2}\hfill & \text{Multiply both sides by 3}.\hfill \\ \text{ }0={w}^{3}+4{w}^{2}-1053 \hfill & \text{Subtract 1053 from both sides}.\hfill \end{array}[/latex]
Descartes’ rule of signs tells us there is one positive solution. The Rational Zero Theorem tells us that the possible rational zeros are [latex]\pm 3,\pm 9,\pm 13,\pm 27,\pm 39,\pm 81,\pm 117,\pm 351[/latex], and [latex]\pm 1053[/latex]. We can use synthetic division to test these possible zeros. Only positive numbers make sense as dimensions for a cake, so we need not test any negative values. Let’s begin by testing values that make the most sense as dimensions for a small sheet cake. Use synthetic division to check [latex]x=1[/latex].
Since 1 is not a solution, we will check [latex]x=3[/latex].
Since 3 is not a solution either, we will test [latex]x=9[/latex].
Synthetic division gives a remainder of 0, so 9 is a solution to the equation. We can use the relationships between the width and the other dimensions to determine the length and height of the sheet cake pan.
[latex]l=w+4=9+4=13\text{ and }h=\frac{1}{3}w=\frac{1}{3}\left(9\right)=3[/latex]
The sheet cake pan should have dimensions 13 inches by 9 inches by 3 inches.