Logarithmic Function Graphs and Characteristics: Fresh Take

  • Identify the domain of a logarithmic function
  • Graph logarithmic functions

Domain of Logarithmic Functions

The Main Idea

  • Basic Domain Rule:
    • For [latex]y = \log_b(x)[/latex], the domain is [latex](0, \infty)[/latex]
    • The argument of a logarithm must be positive
  • Vertical Asymptote:
    • Logarithmic functions have a vertical asymptote at [latex]x = 0[/latex]
  • Inverse Relationship:
    • Domain of [latex]\log_b(x)[/latex] is the range of [latex]b^x[/latex]
    • Range of [latex]\log_b(x)[/latex] is the domain of [latex]b^x[/latex]
  • Transformations:
    • Can change the domain of the parent function
    • Always ensure the argument remains positive
  • Finding Domains:
    • Set up inequality: [latex]\text{ argument }> 0[/latex]
    • Solve for [latex]x[/latex]
    • Express domain in interval notation
What is the domain of [latex]f\left(x\right)={\mathrm{log}}_{5}\left(x - 2\right)+1[/latex]?

What is the domain of [latex]f\left(x\right)=\mathrm{log}\left(x - 5\right)+2[/latex]?

You can view the transcript for “Ex: Find the Domain of Logarithmic Functions” here (opens in new window).

Graphing a Logarithmic Function Using a Table of Values

The Main Idea

  • Parent Function:
    • [latex]f(x) = \log_b(x)[/latex] where [latex]b > 0[/latex] and [latex]b \neq 1[/latex]
  • Inverse Relationship:
    • Logarithmic functions are inverses of exponential functions
    • Their graphs are reflections of each other across [latex]y = x[/latex]
  • Key Characteristics:
    • Domain: [latex](0, \infty)[/latex]
    • Range: [latex](-\infty, \infty)[/latex]
    • Vertical asymptote: [latex]x = 0[/latex]
    • [latex]x[/latex]-intercept: [latex](1, 0)[/latex]
    • Key point: [latex](b, 1)[/latex]
  • Behavior:
    • Increasing if [latex]b > 1[/latex]
    • Decreasing if [latex]0 < b < 1[/latex]
  • Graph Shape:
    • Starts at vertical asymptote [latex]x = 0[/latex]
    • Passes through [latex](1, 0)[/latex] and [latex](b, 1)[/latex]
    • Curves upward ([latex]b > 1[/latex]) or downward ([latex]0 < b < 1[/latex])

 

You can view the transcript for “Ex: Graph an Exponential Function and Logarithmic Function” here (opens in new window).

You can view the transcript for “Ex 1: Match Graphs with Exponential and Logarithmic Functions” here (opens in new window).

Graphing Transformations of Logarithmic Functions

The Main Idea

  • Parent Function:
    • [latex]f(x) = \log_b(x)[/latex] where [latex]b > 0[/latex] and [latex]b \neq 1[/latex]
  • Horizontal Shifts:
    • [latex]f(x) = \log_b(x + c)[/latex]
    • Shifts left [latex]c[/latex] units if [latex]c > 0[/latex]
    • Shifts right [latex]c[/latex] units if [latex]c < 0[/latex]
    • Vertical asymptote: [latex]x = -c[/latex]
    • Domain: [latex](-c, \infty)[/latex]
    • Range: [latex](-\infty, \infty)[/latex]
  • Vertical Shifts:
    • [latex]f(x) = \log_b(x) + d[/latex]
    • Shifts up [latex]d[/latex] units if [latex]d > 0[/latex]
    • Shifts down [latex]d[/latex] units if [latex]d < 0[/latex]
    • Vertical asymptote: [latex]x = 0[/latex]
    • Domain: [latex](0, \infty)[/latex]
    • Range: [latex](-\infty, \infty)[/latex]
  • Effect on Domain and Range:
    • Horizontal shifts affect domain
    • Vertical shifts do not affect domain or range
  • Vertical Stretches and Compressions:
    • [latex]f(x) = a\log_b(x)[/latex], where [latex]a > 0[/latex]
    • Stretch if [latex]a > 1[/latex], compress if [latex]0 < a < 1[/latex]
    • Vertical asymptote: [latex]x = 0[/latex] (unchanged)
    • Domain: [latex](0, \infty)[/latex] (unchanged)
    • Range: [latex](-\infty, \infty)[/latex] (unchanged)
  • Reflections:
    • About [latex]x[/latex]-axis: [latex]f(x) = -\log_b(x)[/latex]
      • Domain: [latex](0, \infty)[/latex], Range: [latex](-\infty, \infty)[/latex] (unchanged)
    • About [latex]y[/latex]-axis: [latex]f(x) = \log_b(-x)[/latex]
      • Domain: [latex](-\infty, 0)[/latex], Range: [latex](-\infty, \infty)[/latex]
  • Combined Transformations:
    • Can involve multiple operations (e.g., [latex]f(x) = a\log_b(x-h) + k[/latex])
    • Apply transformations in the correct order: inside parentheses first, then outside
  • Vertical Asymptote:
    • [latex]x = 0[/latex] for parent function
    • Shifts with horizontal transformations
Sketch a graph of [latex]f\left(x\right)={\mathrm{log}}_{3}\left(x+4\right)[/latex] alongside its parent function. Include the key points and asymptotes on the graph. State the domain, range, and asymptote.

Sketch a graph of [latex]f\left(x\right)={\mathrm{log}}_{2}\left(x\right)+2[/latex] alongside its parent function. Include the key points and asymptote on the graph. State the domain, range, and asymptote.

Sketch a graph of [latex]f\left(x\right)=\frac{1}{2}{\mathrm{log}}_{4}\left(x\right)[/latex] alongside its parent function. Include the key points and asymptote on the graph. State the domain, range, and asymptote.

Sketch a graph of the function [latex]f\left(x\right)=3\mathrm{log}\left(x - 2\right)+1[/latex]. State the domain, range, and asymptote.

Graph [latex]f\left(x\right)=-\mathrm{log}\left(-x\right)[/latex]. State the domain, range, and asymptote.

You can view the transcript for “How to graph a logarithmic function with horizontal shift” here (opens in new window).

You can view the transcript for “Graph a logarithmic function with multiple transformations” here (opens in new window).

You can view the transcript for “Logarithmic Function Graph Stretch and Compression Shifts/Transformations” here (opens in new window).

You can view the transcript for “Learn how to graph a logarithm with reflections over x and y axis” here (opens in new window).