Domain and Range: Fresh Take

  • Determine the set of all possible input values for a function based on its equation
  • Identify the set of all possible inputs (domain) and outputs (range) from looking at a graph
  • Figure out the allowed inputs and outputs for the fundamental toolkit functions
  • Sketch piecewise functions, showing each segment with its own rule on the graph

Domain and Range

The Main Idea

  • Domain:
    • Set of all possible input values (x-values)
    • Often represented using interval notation
  • Range:
    • Set of all possible output values (y-values)
    • Determined by the function’s behavior
  • Interval Notation:
    • Uses brackets [ ] for inclusive endpoints
    • Uses parentheses ( ) for exclusive endpoints
    • Example: [latex](0, 100][/latex] means more than 0 and less than or equal to 100
  • Domain Restrictions:
    • Denominators: Exclude values making denominator zero
    • Even roots: Exclude values making radicand negative
    • Consider function’s context (e.g., real-world limitations)
  • Range Analysis:
    • Examine function behavior
    • Consider limitations on output values

Key Techniques

  1. Finding Domain:
    • For simple functions: Consider all real numbers
    • For fractions: Set denominator to zero, solve for x, exclude those values
    • For even roots: Set radicand ≥ 0, solve for x
  2. Finding Range:
    • Analyze function behavior
    • Consider minimum/maximum possible outputs
    • Use graphing or tables to confirm
  3. Special Cases:
    • Polynomials: Usually all real numbers for domain and range
    • Rational functions: Exclude zeros in denominator for domain
    • Root functions: Ensure non-negative radicand for domain
Find the domain of the function: [latex]f(x)=5-x+{x}^{3}[/latex].

Watch the following video to see more examples of how to find the domain of a rational function (one with a fraction).

You can view the transcript for “Ex: The Domain of Rational Functions” here (opens in new window).

Find the domain of the function [latex]f(x)=\sqrt{5+2x}[/latex].

[latex]{[}-\frac{5}{2},\infty )[/latex]

The next video gives more examples of how to define the domain of a function that contains an even root.

You can view the transcript for “Ex: Domain and Range of Square Root Functions” here (opens in new window).

Find the domain and range of [latex]f(x)=\dfrac{2}{x+1}[/latex].

Find the domain and range of [latex]f(x)=-\sqrt{2-x}[/latex].

Determine Domain and Range from a Graph

The Main Idea

  • Visual Interpretation:
    • Domain: All input values (x-axis)
    • Range: All output values (y-axis)
  • Graph Extent:
    • Horizontal extent determines domain
    • Vertical extent determines range
  • Interval Notation:
    • Write domain and range from left to right
    • Use appropriate brackets/parentheses
  • Graph Limitations:
    • Consider unseen portions of the graph
    • Be aware of potential continuations beyond visible area

Key Techniques

  1. Analyzing Continuous Graphs:
    • Identify leftmost and rightmost x-values for domain
    • Identify lowest and highest y-values for range
  2. Analyzing Discrete Graphs:
    • Consider individual points for domain and range
    • Pay attention to gaps or jumps in the graph
  3. Interpreting Asymptotes:
    • Horizontal asymptotes affect range
    • Vertical asymptotes affect domain
  4. Reading Scales:
    • Note axis labels and units
    • Estimate values between gridlines when necessary
Given the graph, identify the domain and range using interval notation.Graph of World Population Increase where the y-axis represents millions of people and the x-axis represents the year.

You can view the transcript for “Ex 1 – Determine the Domain and Range of the Graph of a Function” here (opens in new window).

Domain and Range of Toolkit Functions

The Main Idea

  • Constant Function: [latex]f(x) = c[/latex]
    • Domain: All real numbers
    • Range: [latex]{c}[/latex] or [latex][c, c][/latex]
  • Identity Function: [latex]f(x) = x[/latex]
    • Domain: All real numbers
    • Range: All real numbers
  • Absolute Value Function: [latex]f(x) = |x|[/latex]
    • Domain: All real numbers
    • Range: [latex][0, \infty)[/latex]
  • Quadratic Function: [latex]f(x) = x^2[/latex]
    • Domain: All real numbers
    • Range: [latex][0, \infty)[/latex]
  • Cubic Function: [latex]f(x) = x^3[/latex]
    • Domain: All real numbers
    • Range: All real numbers
  • Reciprocal Function: [latex]f(x) = \frac{1}{x}[/latex]
    • Domain: All real numbers except 0
    • Range: All real numbers except 0
  • Reciprocal Squared Function: [latex]f(x) = \frac{1}{x^2}[/latex]
    • Domain: All real numbers except 0
    • Range: [latex](0, \infty)[/latex]
  • Square Root Function: [latex]f(x) = \sqrt{x}[/latex]
    • Domain: [latex][0, \infty)[/latex]
    • Range: [latex][0, \infty)[/latex]
  • Cube Root Function: [latex]f(x) = \sqrt[3]{x}[/latex]
    • Domain: All real numbers
    • Range: All real numbers

Key Techniques

  1. Analyzing Domain:
    • Consider restrictions (e.g., division by zero, even roots of negative numbers)
    • Identify any x-values that produce undefined results
  2. Analyzing Range:
    • Consider the function’s behavior for all valid inputs
    • Identify any y-values that cannot be achieved
  3. Using Interval Notation:
    • Use square brackets [ ] for inclusive endpoints
    • Use parentheses ( ) for exclusive endpoints
    • Use infinity symbols when there’s no upper or lower bound
  4. Graphical Analysis:
    • Visualize the function to confirm domain and range
    • Pay attention to asymptotes and end behavior
Find the domain and range of [latex]f(x)=2x^3-x[/latex].

You can view the transcript for “1.2.h Domain and Range of Toolkit Functions” here (opens in new window).

Piecewise-Defined Functions

The Main Idea

  • Definition:
    • Functions defined by different formulas over different parts of the domain
    • Notation uses curly braces and if-statements
  • Absolute Value Function:
    • Classic example of a piecewise function
    • [latex]|x| = \begin{cases} x & \text{if } x \geq 0 \ -x & \text{if } x < 0 \end{cases}[/latex]
  • Domain and Range:
    • Domain is the union of all piece domains
    • Range depends on the specific functions used
  • Graphing:
    • Combine graphs of individual pieces
    • Pay attention to endpoints and continuity

Key Techniques

  1. Writing Piecewise Functions:
    • Identify intervals for different rules
    • Determine formulas for each interval
    • Use proper notation with curly braces
  2. Evaluating Piecewise Functions:
    • Determine which piece applies to the input
    • Use the corresponding formula
  3. Graphing Piecewise Functions:
    • Graph each piece on its interval
    • Use open/closed circles for endpoints
    • Ensure the function passes the vertical line test

You can view the transcript for “Ex 2: Graph a Piecewise Defined Function” here (opens in new window).