Series and Their Notations: Learn It 5

Finding Sums of Infinite Series

When the sum of an infinite geometric series exists, we can calculate the sum.

The formula for the sum of an infinite series is related to the formula for the sum of the first [latex]n[/latex] terms of a geometric series.

[latex]{S}_{n}=\dfrac{{a}_{1}\left(1-{r}^{n}\right)}{1-r}[/latex]

As [latex]n[/latex] gets large, [latex]r^n[/latex] gets very small. We say that as [latex]n[/latex] increases without bound, [latex]r^n[/latex] approaches [latex]0[/latex]. As [latex]r^n[/latex] approaches [latex]0[/latex], [latex]1-r^n[/latex] approaches [latex]1[/latex]. When this happens the numerator approaches [latex]a_1[/latex]. This gives us the formula for the sum of an infinite geometric series.

formula for the sum of an infinite geometric series

The formula for the sum of an infinite geometric series with [latex]-1 < r < 1[/latex] is

[latex]S=\dfrac{{a}_{1}}{1-r}[/latex]

We will examine an infinite series with [latex]r=\frac{1}{2}[/latex]. What happens to [latex]r^n[/latex] as [latex]n[/latex] increases?

[latex]\begin{align} &{\left(\frac{1}{2}\right)}^{2} = \frac{1}{4} \\&{\left(\frac{1}{2}\right)}^{3} = \frac{1}{8} \\&{\left(\frac{1}{2}\right)}^{4} = \frac{1}{16} \end{align}[/latex]

The value of [latex]r^n[/latex] decreases rapidly. What happens for greater values of [latex]n[/latex]?

[latex]\begin{align} &{\left(\frac{1}{2}\right)}^{10} = \frac{1}{1\text{,}024} \\&{\left(\frac{1}{2}\right)}^{20} = \frac{1}{1\text{,}048\text{,}576} \\&{\left(\frac{1}{2}\right)}^{30} = \frac{1}{1\text{,}073\text{,}741\text{,}824} \end{align}[/latex]

How To: Given an infinite geometric series, find its sum.

  1. Identify [latex]a_1[/latex] and [latex]r[/latex].
  2. Confirm that [latex]-1 < r < 1[/latex].
  3. Substitute values for [latex]a_1[/latex] and r into the formula, [latex]S=\dfrac{{a}_{1}}{1-r}[/latex].
  4. Simplify to find [latex]S[/latex].
Find the sum, if it exists, for the following:

  1. [latex]10+9+8+7+\dots[/latex]
  2. [latex]248.6+99.44+39.776+\dots[/latex]
  3. [latex]\sum\limits _{k=1}^{\infty}4\text{,}374\cdot\left(-\dfrac{1}{3}\right)^{k-1}[/latex]
  4. [latex]\sum\limits _{k=1}^{\infty}\dfrac{1}{9}\cdot\left(\dfrac{4}{3}\right)^{k}[/latex]

Find the equivalent fraction for the repeating decimal [latex]0.\overline{3}[/latex].