Parabolas: Fresh Take

  • Draw parabolas on a graph, understanding how their shapes change based on whether their vertex is at the origin or another point
  • Write equations of parabolas in standard form
  • Solve applied problems involving parabolas

Parabolas

To work with parabolas in the coordinate plane, we consider two cases: those with a vertex at the origin and those with a vertex at a point other than the origin. We begin with the former.

image

Let [latex]\left(x,y\right)[/latex] be a point on the parabola with vertex [latex]\left(0,0\right)[/latex], focus [latex]\left(0,p\right)[/latex], and directrix [latex]y= -p[/latex] as shown in Figure 4. The distance [latex]d[/latex] from point [latex]\left(x,y\right)[/latex] to point [latex]\left(x,-p\right)[/latex] on the directrix is the difference of the y-values: [latex]d=y+p[/latex]. The distance from the focus [latex]\left(0,p\right)[/latex] to the point [latex]\left(x,y\right)[/latex] is also equal to [latex]d[/latex] and can be expressed using the distance formula.

[latex]\begin{align}d&=\sqrt{{\left(x - 0\right)}^{2}+{\left(y-p\right)}^{2}} \\ &=\sqrt{{x}^{2}+{\left(y-p\right)}^{2}} \end{align}[/latex]

Set the two expressions for [latex]d[/latex] equal to each other and solve for [latex]y[/latex] to derive the equation of the parabola. We do this because the distance from [latex]\left(x,y\right)[/latex] to [latex]\left(0,p\right)[/latex] equals the distance from [latex]\left(x,y\right)[/latex] to [latex]\left(x, -p\right)[/latex].

[latex]\sqrt{{x}^{2}+{\left(y-p\right)}^{2}}=y+p[/latex]

We then square both sides of the equation, expand the squared terms, and simplify by combining like terms.

[latex]\begin{gathered}{x}^{2}+{\left(y-p\right)}^{2}={\left(y+p\right)}^{2} \\ {x}^{2}+{y}^{2}-2py+{p}^{2}={y}^{2}+2py+{p}^{2}\\ {x}^{2}-2py=2py \\ {x}^{2}=4py\end{gathered}[/latex]

The equations of parabolas with vertex [latex]\left(0,0\right)[/latex] are [latex]{y}^{2}=4px[/latex] when the x-axis is the axis of symmetry and [latex]{x}^{2}=4py[/latex] when the y-axis is the axis of symmetry.

Graphing Parabolas with Vertices at the Origin

The Main Idea

  • Standard Forms:
    • Vertical parabolas: [latex]x^2 = 4py[/latex]
    • Horizontal parabolas: [latex]y^2 = 4px[/latex]
  • Key Features:
    • Vertex: Always at [latex](0, 0)[/latex] for these standard forms
    • Axis of symmetry: [latex]x[/latex]-axis for horizontal parabolas, [latex]y[/latex]-axis for vertical parabolas
    • Focus: [latex](p, 0)[/latex] for horizontal parabolas, [latex](0, p)[/latex] for vertical parabolas
    • Directrix: [latex]x = -p[/latex] for horizontal parabolas, [latex]y = -p[/latex] for vertical parabolas
    • Focal diameter endpoints: [latex](p, ±2p)[/latex] for horizontal parabolas, [latex](±2p, p)[/latex] for vertical parabolas
  • Direction of Opening:
    • Horizontal parabolas: Right if [latex]p > 0[/latex], Left if [latex]p < 0[/latex]
    • Vertical parabolas: Up if [latex]p > 0[/latex], Down if [latex]p < 0[/latex]
  • Tangent Lines:
    • Tangent lines at the endpoints of the focal diameter intersect on the axis of symmetry
Graph [latex]{y}^{2}=-16x[/latex]. Identify and label the focus, directrix, and endpoints of the focal diameter.

Graph [latex]{x}^{2}=8y[/latex]. Identify and label the focus, directrix, and endpoints of the focal diameter.

You can view the transcript for “Conic Sections: The Parabola part 1 of 2” here (opens in new window).

You can view the transcript for “Conic Sections: The Parabola part 2 of 2” here (opens in new window).

Writing Equations of Parabolas in Standard Form

The Main Idea

  • Standard Forms:
    • Horizontal parabolas: [latex]y^2 = 4px[/latex] (focus form: [latex](p, 0)[/latex])
    • Vertical parabolas: [latex]x^2 = 4py[/latex] (focus form: [latex](0, p)[/latex])
  • Key Features Used:
    • Focus coordinates
    • Directrix equation
  • Process:
    • Identify axis of symmetry based on focus coordinates
    • Calculate [latex]4p[/latex] using focus coordinates
    • Substitute [latex]4p[/latex] into the appropriate standard form equation
  • Distinction:
    • These are equations of parabolas as geometric objects, not quadratic functions
    • Specific language is used to describe these geometric forms
What is the equation for the parabola with focus [latex]\left(0,\frac{7}{2}\right)[/latex] and directrix [latex]y=-\frac{7}{2}[/latex]?

You can view the transcript for “Ex 2: Conic Section: Parabola with Vertical Axis and Vertex at the Origin (Down)” here (opens in new window).

You can view the transcript for “Ex 3: Conic Section: Parabola with Horizontal Axis and Vertex at the Origin (Right)” here (opens in new window).

Parabolas with Vertices Not at the Origin

The Main Idea

  • Translated Standard Forms:
    • Horizontal parabolas: [latex]{\left(y-k\right)}^{2}=4p\left(x-h\right)[/latex]
    • Vertical parabolas: [latex]{\left(x-h\right)}^{2}=4p\left(y-k\right)[/latex]
  • Key Features:
    • Vertex: [latex](h, k)[/latex]
    • Axis of symmetry: [latex]x = h[/latex] (vertical) or [latex]y = k[/latex] (horizontal)
    • Focus: [latex](h+p, k)[/latex] for horizontal, [latex](h, k+p)[/latex] for vertical
    • Directrix: [latex]x = h-p[/latex] for horizontal, [latex]y = k-p[/latex] for vertical
  • Opening Direction:
    • Horizontal: Right if [latex]p > 0[/latex], Left if [latex]p < 0[/latex]
    • Vertical: Up if [latex]p > 0[/latex], Down if [latex]p < 0[/latex]
  • Completing the Square:
    • Used to convert non-standard equations into standard form
Graph [latex]{\left(y+1\right)}^{2}=4\left(x - 8\right)[/latex]. Identify and label the vertex, axis of symmetry, focus, directrix, and endpoints of the focal diameter.

Graph [latex]{\left(x+2\right)}^{2}=-20\left(y - 3\right)[/latex]. Identify and label the vertex, axis of symmetry, focus, directrix, and endpoints of the focal diameter.