We have a system of three equations in three variables. Let [latex]x[/latex] be the amount invested at [latex]5\%[/latex] interest, let [latex]y[/latex] be the amount invested at [latex]8\%[/latex] interest, and let [latex]z[/latex] be the amount invested at [latex]9\%[/latex] interest. Thus,
[latex]\begin{array}{l}\text{ }x+y+z=10,000\hfill \\ 0.05x+0.08y+0.09z=770\hfill \\ \text{ }2x-z=0\hfill \end{array}[/latex]
As a matrix, we have
[latex]\left[\begin{array}{ccc|c}\hfill 1& \hfill 1& \hfill 1& \hfill 10,000\\ \hfill 0.05& \hfill 0.08& \hfill 0.09& \hfill 770\\ \hfill 2& \hfill 0& \hfill -1& \hfill 0\end{array}\right][/latex]
Now, we perform Gaussian elimination to achieve row-echelon form.
[latex]\begin{array}{l}\begin{array}{l}\hfill \\ -0.05{R}_{1}+{R}_{2}={R}_{2}\to \left[\begin{array}{ccc|c}\hfill 1& \hfill 1& \hfill 1& \hfill 10,000\\ \hfill 0& \hfill 0.03& \hfill 0.04& \hfill 270\\ \hfill 2& \hfill 0& \hfill -1& \hfill 0\end{array}\right]\hfill \end{array}\hfill \\ -2{R}_{1}+{R}_{3}={R}_{3}\to \left[\begin{array}{ccc|c}\hfill 1& \hfill 1& \hfill 1& \hfill 10,000\\ \hfill 0& \hfill 0.03& \hfill 0.04& \hfill 270\\ \hfill 0& -2& \hfill -3& \hfill -20,000 \end{array}\right]\hfill \\ \frac{1}{0.03}{R}_{2}={R}_{2}\to \left[\begin{array}{ccc|c}\hfill 1& \hfill 1& \hfill 1& \hfill 10,000\\ \hfill 0& \hfill 1& \hfill \frac{4}{3}& \hfill 9,000\\ \hfill 0& -2& \hfill -3& \hfill -20,000 \end{array}\right]\hfill \\ 2{R}_{2}+{R}_{3}={R}_{3}\to \left[\begin{array}{ccc|c}\hfill 1& \hfill 1& \hfill 1& \hfill 10,000\\ \hfill 0& \hfill 1& \hfill \frac{4}{3}& \hfill 9,000\\ \hfill 0& 0& \hfill -\frac{1}{3}& \hfill -2,000 \end{array}\right]\hfill \end{array}[/latex]
The third row tells us [latex]-\frac{1}{3}z=-2,000[/latex]; thus [latex]z=6,000[/latex].
The second row tells us [latex]y+\frac{4}{3}z=9,000[/latex].
Substituting [latex]z=6,000[/latex], we get
[latex]\begin{array}{r}\hfill y+\frac{4}{3}\left(6,000\right)=9,000\\ \hfill y+8,000=9,000\\ \hfill y=1,000\end{array}[/latex]
The first row tells us [latex]x+y+z=10,000[/latex]. Substituting [latex]y=1,000[/latex] and [latex]z=6,000[/latex], we get
[latex]\begin{array}{l}x+1,000+6,000=10,000\hfill \\ \text{ }x=3,000\text{ }\hfill \end{array}[/latex]
The answer is [latex]$3,000[/latex] invested at [latex]5\%[/latex] interest, [latex]$1,000[/latex] invested at [latex]8\%[/latex], and [latex]$6,000[/latex] invested at [latex]9\%[/latex] interest.