Linear Functions: Background You’ll Need 2

  • Find the equation of the line.

The Equation of a Line

When data is collected, a linear model can be created from two data points. Let’s see how to find an equation of a line when two points are given by following the steps below.

How to: Find the equation of a line given two points:

  1. Find the slope using the given points.
  2. Choose one point and label its coordinates [latex](x_1, y_1)[/latex].
  3. Plug [latex]m[/latex], [latex]x_1[/latex], and [latex]y_1[/latex] into the point-slope form, [latex]y - y_1 = m(x - x_1)[/latex].
  4. Rewrite the equation in slope-intercept form, [latex]y = mx+b[/latex].
Find the equation of a line containing the points [latex](-4, -3)[/latex] and [latex](1, -5)[/latex].

  1. Calculate the slope.
    [latex]\begin{align*} m &= \frac{y_2 - y_1}{x_2 - x_1} \\ &= \frac{-5 - (-3)}{1 - (-4)} \\ &= \frac{-5 + 3}{1 + 4} \\ &= \frac{-2}{5} \end{align*}[/latex]
  2. Let’s use [latex](-4, -3)[/latex] as [latex](x_1, y_1)[/latex].
  3. Plug the values above into the point-slope form of the equation [latex]y - y_1 = m(x - x_1)[/latex].
    [latex]\begin{align*} y - (-3) &= -\frac{2}{5}(x - (-4)) \\ y + 3 &= -\frac{2}{5}(x + 4) \end{align*}[/latex]
  4. Simplify to the slope-intercept form, [latex]y = mx+b[/latex].
    [latex]\begin{align*} y + 3 &= -\frac{2}{5}x - \frac{2}{5} \cdot 4 \\ y + 3 &= -\frac{2}{5}x - \frac{8}{5} \\ y &= -\frac{2}{5}x - \frac{8}{5} - 3 \\ y &= -\frac{2}{5}x - \frac{8}{5} - \frac{15}{5} \\ y &= -\frac{2}{5}x - \frac{23}{5} \end{align*}[/latex]

So, the equation of the line is:

[latex]y = -\dfrac{2}{5}x - \dfrac{23}{5}[/latex]