Inverse Functions: Fresh Take

  • Confirm that two functions are inverses
  • Figure out the allowed inputs and outputs for an inverse function and adjust the original function’s domain to ensure it is one-to-one
  • Discover or calculate the inverse of a function
  • Draw the inverse of a function on the same graph by reflecting it across the line [latex]y=x[/latex]

Inverse Function

The Main Idea

  • Definition of Inverse Functions:
    • An inverse function [latex]f^{-1}(x)[/latex] “undoes” what the original function [latex]f(x)[/latex] does
    • Input and output are swapped: if [latex]f(a) = b[/latex], then [latex]f^{-1}(b) = a[/latex]
  • Notation:
    • [latex]f^{-1}(x)[/latex] represents the inverse of [latex]f(x)[/latex]
    • The “-1” is not an exponent; [latex]f^{-1}(x) \neq \frac{1}{f(x)}[/latex]
  • Graphical Representation:
    • The graph of [latex]f^{-1}(x)[/latex] is a reflection of [latex]f(x)[/latex] over the line [latex]y = x[/latex]
    • If [latex](a, b)[/latex] is on [latex]f(x)[/latex], then [latex](b, a)[/latex] is on [latex]f^{-1}(x)[/latex]
  • Conditions for Inverse Functions:
    • The original function must be one-to-one (injective)
    • Each output corresponds to exactly one input
    • Passes the horizontal line test
  • Verifying Inverse Functions:
    • [latex]f(f^{-1}(x)) = x[/latex] and [latex]f^{-1}(f(x)) = x[/latex]
    • These identities should hold for all [latex]x[/latex] in the domain

 

Given that [latex]{h}^{-1}\left(6\right)=2[/latex], what are the corresponding input and output values of the original function [latex]h?[/latex]

You can view the transcript for “Ex: Find an Inverse Function From a Table” here (opens in new window).

If [latex]f\left(x\right)={x}^{3}-4[/latex] and [latex]g\left(x\right)=\sqrt[3]{x+4}[/latex], is [latex]g={f}^{-1}?[/latex]

If [latex]f\left(x\right)={\left(x - 1\right)}^{3}\text{and}g\left(x\right)=\sqrt[3]{x}+1[/latex], is [latex]g={f}^{-1}?[/latex]

Determine the Domain and Range of an Inverse Function

The Main Idea

  • Relationship between function and inverse domains/ranges:
    • Range of [latex]f(x)[/latex] = Domain of [latex]f^{-1}(x)[/latex]
    • Domain of [latex]f(x)[/latex] = Range of [latex]f^{-1}(x)[/latex]
  • One-to-one functions:
    • Only one-to-one functions have inverse functions
    • Pass the horizontal line test
    • Identifying one-to-one functions:
      • Graphical method: Horizontal line test
      • Algebraic method: [latex]f(a) = f(b)[/latex] implies [latex]a = b[/latex]
  • Restricting domains:
    • Non-one-to-one functions can be made invertible by restricting their domains
    • The restricted domain becomes the range of the inverse function
    • Domain restriction:
      • Choose a portion of the function that is one-to-one
      • Ensures the inverse is a valid function
  • Uniqueness of inverse functions:
    • A function has only one inverse on a given domain

How to Find Domain and Range of Inverse Functions

  1. For one-to-one functions:
    • Write the range of [latex]f(x)[/latex] as the domain of [latex]f^{-1}(x)[/latex]
    • Write the domain of [latex]f(x)[/latex] as the range of [latex]f^{-1}(x)[/latex]
  2. For restricted functions:
    • Identify the restriction that makes the function one-to-one
    • The restricted domain of [latex]f(x)[/latex] becomes the range of [latex]f^{-1}(x)[/latex]
    • The range of the restricted [latex]f(x)[/latex] becomes the domain of [latex]f^{-1}(x)[/latex]
The domain of the function [latex]f[/latex] is [latex]\left(1,\infty \right)[/latex] and the range of the function [latex]f[/latex] is [latex]\left(\mathrm{-\infty },-2\right)[/latex]. Find the domain and range of the inverse function.

You can view the transcript for “Ex: Restrict the Domain to Make a Function 1 to 1, Then Find the Inverse” here (opens in new window).

Finding and Evaluating Inverse Functions

The Main Idea

  • Inverting tabular functions:
    • Interchange domain and range
      • Domain of [latex]f(x)[/latex] = Range of [latex]f^(-1)(x)[/latex]
      • Range of [latex]f(x)[/latex] = Domain of [latex]f^(-1)(x)[/latex]
    • Swap inputs and outputs
  • Evaluating inverses from graphs:
    • Use vertical axis for inverse input
      • Vertical extent of [latex]f(x)[/latex] = Domain of [latex]f^(-1)(x)[/latex]
    • Use horizontal axis for inverse output
        • Horizontal extent of [latex]f(x)[/latex] = Range of [latex]f^(-1)(x)[/latex]
  • Finding inverse functions from formulas:
    • Solve for [latex]x[/latex] in terms of [latex]y[/latex]
    • Replace [latex]y[/latex] with [latex]f^(-1)(x)[/latex]

Methods for Finding and Evaluating Inverse Functions

  1. For tabular functions:
    • Swap the input and output columns
    • Read the new table for the inverse function values
  2. For graphical functions:
    • Use the [latex]y[/latex]-axis of the original function as the input for the inverse
    • Read the corresponding [latex]x[/latex]-value as the output of the inverse
  3. For formula-based functions:
    1. Verify the function is one-to-one
    2. Replace [latex]f(x)[/latex] with [latex]y[/latex]
    3. Interchange [latex]x[/latex] and [latex]y[/latex]
    4. Solve for [latex]y[/latex]
    5. Rename the resulting expression as [latex]f^(-1)(x)[/latex]
Using the table below, find and interpret

  1. [latex]\text{ }f\left(60\right)[/latex]
  2. [latex]\text{ }{f}^{-1}\left(60\right)[/latex]
[latex]t\text{ (minutes)}[/latex] 30 50 60 70 90
[latex]f\left(t\right)\text{ (miles)}[/latex] 20 40 50 60 70

Using the graph below,

  1. find [latex]{g}^{-1}\left(1\right)[/latex]
  2. estimate [latex]{g}^{-1}\left(4\right)[/latex]

Graph of g(x).

Solve for [latex]x[/latex] in terms of [latex]y[/latex] given [latex]y=\frac{1}{3}\left(x - 5\right)[/latex]

You can view the transcript for “Lesson: Inverse Functions” here (opens in new window).

You can view the transcript for “Ex: Function and Inverse Function Values Using a Graph” here (opens in new window).

Finding Inverse Functions and Their Graphs

The Main Idea

  • Graphical relationship between a function and its inverse:
    • Reflection over the line [latex]y = x[/latex] (identity line)
  • Domain and range relationships:
    • Domain of [latex]f(x)[/latex] becomes range of [latex]f^{-1}(x)[/latex]
    • Range of [latex]f(x)[/latex] becomes domain of [latex]f^{-1}(x)[/latex]
  • Restricting domains for invertibility:
    • Some functions need domain restrictions to be one-to-one
  • Functions that are their own inverses:
    • Special cases where [latex]f(x) = f^{-1}(x)[/latex]

Key Concepts

  • Reflection principle:
    • Graph of [latex]f^{-1}(x)[/latex] is the reflection of [latex]f(x)[/latex] over [latex]y = x[/latex]
  • One-to-one functions:
    • Necessary for a function to have an inverse
    • Pass the horizontal line test
  • Identity line:
    • The line [latex]y = x[/latex]
    • Acts as the “mirror” for reflecting graphs
  • Restricted domains:
    • Make non-one-to-one functions invertible
    • Example: [latex]f(x) = x^2[/latex] restricted to [latex][0, \infty)[/latex]

Techniques for Graphing Inverse Functions

  1. Identify key points on the original function:
    • [latex]y[/latex]-intercepts become [latex]x[/latex]-intercepts for the inverse
    • [latex]x[/latex]-intercepts become [latex]y[/latex]-intercepts for the inverse
  2. Reflect these key points over [latex]y = x[/latex]
  3. Consider domain and range:
    • Vertical asymptotes become horizontal asymptotes
    • Horizontal asymptotes become vertical asymptotes
  4. Sketch the inverse function:
    • Connect the reflected points
    • Ensure the graph passes the vertical line test
  5. Verify inverse relationship:
    • Check if composition yields the identity function