Transformations of Functions: Learn It 5

Performing a Sequence of Transformations

Combining transformations follows a specific order of operations similar to the mathematical order of operations (PEMDAS: Parentheses, Exponents, Multiplication and Division, Addition and Subtraction). When applying transformations to a function, the sequence ensures that each transformation is applied correctly and the resulting graph reflects the intended changes.

order of transformations

When transforming a function [latex]y = a \cdot f(bx-c)+d[/latex], the general order of transformation is as follows:

  1. Horizontal Shifts by [latex]c[/latex] units.
    • [latex]f(x)[/latex] is shifted to the right if [latex]c[/latex] is positive
    • [latex]f(x)[/latex] is shifted to the left if [latex]c[/latex] is negative.
  2. Horizontal Stretches/Compressions by a factor of [latex]\dfrac{1}{b}[/latex].
    • [latex]f(x)[/latex] is compressed horizontally if [latex]|b|>1[/latex].
    • [latex]f(x)[/latex] is stretched horizontally if [latex]0<|b|<1[/latex].
  3. Reflections
    • Reflection across the y-axis if [latex]b[/latex] is negative.
    • Reflection across the x-axis if [latex]a[/latex] is negative.
  4. Vertical Stretches/Compressions by a factor of [latex]a[/latex].
    • [latex]f(x)[/latex] is stretched vertically if [latex]|a|>1[/latex].
    • [latex]f(x)[/latex] is compressed vertically if [latex]0<|a|<1[/latex].
  5. Vertical Shifts by [latex]d[/latex] units.
    • [latex]f(x)[/latex] is shifted to the upward if [latex]d[/latex] is positive
    • [latex]f(x)[/latex] is shifted to the downward if [latex]d[/latex] is negative.
  • When combining vertical transformations written in the form [latex]af\left(x\right)+k[/latex], first vertically stretch by [latex]a[/latex] and then vertically shift by [latex]k[/latex].
  • When combining horizontal transformations written in the form [latex]f\left(bx-h\right)[/latex], first horizontally shift by [latex]\frac{h}{b}[/latex] and then horizontally stretch by [latex]\frac{1}{b}[/latex].
  • When combining horizontal transformations written in the form [latex]f\left(b\left(x-h\right)\right)[/latex], first horizontally stretch by [latex]\frac{1}{b}[/latex] and then horizontally shift by [latex]h[/latex].
Given [latex]f(x)=|x|[/latex], identify the transformations and graph the transformed function

[latex]h(x)=f(x+1)-3 = |x+1|-3[/latex]

Step-by-Step Transformations

  • Original Function: The original function is [latex]f(x)=|x|[/latex].
  • Transformations:
    1. Horizontal Shift: The term [latex]|x+1|[/latex]indicates a horizontal shift to the left by [latex]1[/latex] unit. This is because [latex]x+1 = 0[/latex] when [latex]x=-1[/latex]so the entire graph of [latex]f(x)=|x|[/latex] is moved [latex]1[/latex] unit to the left.
    2. Vertical Shift: The term [latex]-3[/latex] indicates a vertical shift downward by [latex]3[/latex] units.

Graph

Original Graph
[latex]y=|x|[/latex]
Left by [latex]1[/latex] unit
[latex]y=|x+1|[/latex]
Downward by [latex]3[/latex] units
[latex]y = |x+1|-3[/latex]
[latex](0,0)[/latex] [latex](-1,0)[/latex] [latex](-1,-3)[/latex]
[latex](1,1)[/latex] [latex](0,1)[/latex] [latex](0,-2)[/latex]

Graph of an absolute function, y=|x|, and how it was transformed to y=|x+1|-3.

Graph of a half-circle.Use the given graph of [latex]f(x)[/latex] to draw the transformed function:

[latex]g(x)=f(\frac{1}{2}x+1)-3[/latex]

Write a formula for the graph shown below, which is a transformation of the toolkit square root function.Graph of a square root function transposed right one unit and up 2.

A common model for learning has an equation similar to [latex]k\left(t\right)=-{2}^{-t}+1[/latex], where [latex]k[/latex] is the percentage of mastery that can be achieved after [latex]t[/latex] practice sessions. This is a transformation of the function [latex]f\left(t\right)={2}^{t}[/latex] shown below. Sketch a graph of [latex]k\left(t\right)[/latex].Graph of k(t)

Given the table below for the function [latex]f\left(x\right)[/latex], create a table of values for the function [latex]g\left(x\right)=2f\left(3x\right)+1[/latex].

[latex]x[/latex] [latex]6[/latex] [latex]12[/latex] [latex]18[/latex] [latex]24[/latex]
[latex]f\left(x\right)[/latex] [latex]10[/latex] [latex]14[/latex] [latex]15[/latex] [latex]17[/latex]