A Preview of Calculus
For the following exercises (1-3), points P(1,2) and Q(x,y) are on the graph of the function f(x)=x2+1.
-
- 2.2100000
- 2.0201000
- 2.0020010
- 2.0002000
- (1.1000000,2.2100000)
- (1.0100000,2.0201000)
- (1.0010000,2.0020010)
- (1.0001000,2.0002000)
- 2.1000000
- 2.0100000
- 2.0010000
- 2.0001000
- y=2x
- 3
-
- 2.0248457
- 2.0024984
- 2.0002500
- 2.0000250
- (4.1000000,2.0248457)
- (4.0100000,2.0024984)
- (4.0010000,2.0002500)
- (4.00010000,2.0000250)
- 0.24845673
- 0.24984395
- 0.24998438
- 0.24999844
- y=x4+1
- π
-
- −0.95238095
- −0.99009901
- −0.99502488
- −0.99900100
- (−1;.0500000,−0;.95238095)
- (−1;.0100000,−0;.9909901)
- (−1;.0050000,−0;.99502488)
- (1.0010000,−0;.99900100)
- −0.95238095
- −0.99009901
- −0.99502488
- −0.99900100
- y=−x−2
- −49 m/sec (velocity of the ball is 49 m/sec downward)
- 5.2 m/sec
- −9.8 m/sec
- 6 m/sec
- Under, 1 unit2; over: 4 unit2. The exact area of the two triangles is 12(1)(1)+12(2)(2)=2.5 units2.
- Under, 0.96 unit2; over, 1.92 unit2. The exact area of the semicircle with radius 1 is π(1)22=π2 unit2.
- Approximately 1.3333333 unit2
Introduction to the limit of a function
In the following exercises (1-3), set up a table of values to find the indicated limit. Round to eight digits.
-
- −0.80000000
- −0.98000000
- −0.99800000
- −0.99980000
- −1.2000000
- −1.0200000
- −1.0020000
- −1.0002000;
limx→1(1−2x)=−1
-
- −37.931934
- −3377.9264
- −333,777.93
- −33,337,778
- −29.032258
- −3289.0365
- −332,889.04
- −33,328,889
limx→0z−1z2(z+3)=−∞
-
- 0.13495277
- 0.12594300
- 0.12509381
- 0.12500938
- 0.11614402
- 0.12406794
- 0.12490631
- 0.12499063
limx→2−1−2xx2−4=0.1250=18
-
- −10.00000
- −100.00000
- −1000.0000
- −10,000.000;
Guess: limα→0+1αcos(πα)=∞, Actual: DNE
- False; limx→−2+f(x)=+∞
- False; limx→6f(x) DNE since limx→6−f(x)=2 and limx→6+f(x)=5.
- 2
- 1
- DNE
- 0
- DNE
- 2
- 3
- DNE
- 0
-
Answers may vary.
-
Answers may vary.