Processing math: 100%

Understanding Limits: Get Stronger Answer Key

A Preview of Calculus

For the following exercises (1-3), points P(1,2) and Q(x,y) are on the graph of the function f(x)=x2+1.

    1. 2.2100000
    2. 2.0201000
    3. 2.0020010
    4. 2.0002000
    5. (1.1000000,2.2100000)
    6. (1.0100000,2.0201000)
    7. (1.0010000,2.0020010)
    8. (1.0001000,2.0002000)
    9. 2.1000000
    10. 2.0100000
    11. 2.0010000
    12. 2.0001000
  1.  
  2. y=2x
  3.  
  4. 3
  5.  
    1. 2.0248457
    2. 2.0024984
    3. 2.0002500
    4. 2.0000250
    5. (4.1000000,2.0248457)
    6. (4.0100000,2.0024984)
    7. (4.0010000,2.0002500)
    8. (4.00010000,2.0000250)
    9. 0.24845673
    10. 0.24984395
    11. 0.24998438
    12. 0.24999844
  6.  
  7. y=x4+1
  8.  
  9. π
  10.  
    1. 0.95238095
    2. 0.99009901
    3. 0.99502488
    4. 0.99900100
    5. (1;.0500000,0;.95238095)
    6. (1;.0100000,0;.9909901)
    7. (1;.0050000,0;.99502488)
    8. (1.0010000,0;.99900100)
    9. 0.95238095
    10. 0.99009901
    11. 0.99502488
    12. 0.99900100
  11.  
  12. y=x2
  13.  
  14. 49 m/sec (velocity of the ball is 49 m/sec downward)
  15.  
  16. 5.2 m/sec
  17.  
  18. 9.8 m/sec
  19.  
  20. 6 m/sec
  21.  
  22. Under, 1 unit2; over: 4 unit2. The exact area of the two triangles is 12(1)(1)+12(2)(2)=2.5 units2.
  23.  
  24. Under, 0.96 unit2; over, 1.92 unit2. The exact area of the semicircle with radius 1 is π(1)22=π2 unit2.
  25.  
  26. Approximately 1.3333333 unit2

Introduction to the limit of a function

In the following exercises (1-3), set up a table of values to find the indicated limit. Round to eight digits.

    1. 0.80000000
    2. 0.98000000
    3. 0.99800000
    4. 0.99980000
    5. 1.2000000
    6. 1.0200000
    7. 1.0020000
    8. 1.0002000;

    limx1(12x)=1

    1. 37.931934
    2. 3377.9264
    3. 333,777.93
    4. 33,337,778
    5. 29.032258
    6. 3289.0365
    7. 332,889.04
    8. 33,328,889

    limx0z1z2(z+3)=

    1. 0.13495277
    2. 0.12594300
    3. 0.12509381
    4. 0.12500938
    5. 0.11614402
    6. 0.12406794
    7. 0.12490631
    8. 0.12499063

    limx212xx24=0.1250=18

    1. 10.00000
    2. 100.00000
    3. 1000.0000
    4. 10,000.000;

    Guess: limα0+1αcos(πα)=, Actual: DNE

    A graph of the function (1/alpha) * cos (pi / alpha), which oscillates gently until the interval [-.2, .2], where it oscillates rapidly, going to infinity and negative infinity as it approaches the y axis.

  1. False; limx2+f(x)=+
  2. False; limx6f(x) DNE since limx6f(x)=2 and limx6+f(x)=5.
  3.  
  4. 2
  5.  
  6. 1
  7. DNE
  8. 0
  9.  
  10. DNE
  11. 2
  12.  
  13. 3
  14.  
  15. DNE
  16.  
  17. 0
  18.  
  19. Answers may vary.

    A graph of a piecewise function with two segments. The first segment is in quadrant three and asymptotically goes to negative infinity along the y axis and 0 along the x axis. The second segment consists of two curves. The first appears to be the left half of an upward opening parabola with vertex at (0,1). The second appears to be the right half of a downward opening parabola with vertex at (0,1) as well.

  20. Answers may vary.

    A graph containing two curves. The first goes to 2 asymptotically along y=2 and to negative infinity along x = -2. The second goes to negative infinity along x=-2 and to 2 along y=2.