Processing math: 100%

The Limit Laws: Fresh Take

  • Recognize and apply basic limit laws to evaluate the limits of functions, including polynomials and rational functions
  • Evaluate the limit of a function by factoring or by using conjugates
  • Evaluate the limit of a function by using the squeeze theorem

Evaluating Limits

The Main Idea 

  • Limit Laws:
    • Sum/Difference: limxa[f(x)±g(x)]=limxaf(x)±limxag(x)
    • Product: limxa[f(x)g(x)]=limxaf(x)limxag(x)
    • Quotient: limxaf(x)g(x)=limxaf(x)limxag(x), if limxag(x)0
    • Power: limxa[f(x)]n=[limxaf(x)]n
  • Polynomial and Rational Function Limits:
    • limxap(x)=p(a) for polynomials
    • limxap(x)q(x)=p(a)q(a) for rational functions, if q(a)0
  • Techniques for Indeterminate Forms:
    • Factoring and Simplifying:
      • Factor polynomials and cancel common terms
    • Rationalizing (Multiplying by Conjugate):
      • Used for limits with square roots
    • Simplifying Complex Fractions:
      • Combine fractions using LCD
  • Indeterminate Forms:
    • 00, , 0, etc.
    • Require special techniques for evaluation

Use the limit laws to evaluate limx6(2x1)x+4. In each step, indicate the limit law applied.

Evaluate limx2(3x32x+7).

Evaluate limx3x2+4x+3x29

Evaluate limx5x12x5

Evaluate limx31x+2+1x+3

Evaluate limx3(1x34x22x3)

The Squeeze Theorem

The Main Idea 

  • The Squeeze Theorem:
    • If g(x)f(x)h(x) near a, and limxag(x)=limxah(x)=L, then limxaf(x)=L
  • Key Trigonometric Limits: 
    • limθ0sinθ=0
    • limθ0cosθ=1
    • limθ0sinθθ=1
    • limθ01cosθθ=0
  • Geometric Intuition:
    • For small θ: 0<sinθ<θ<tanθ (in radians)
    • It is helpful to visualize the unit circle for sine, cosine, and tangent

Evaluate the following limit using the Squeeze Theorem:

limθ0θsinθθ3

Evaluate the following limit:

limx0xcos(1x)