The Definite Integral: Fresh Take

  • Recognize the parts of an integral and when it can be used
  • Explain how definite integrals relate to the net area under a curve and use geometry to evaluate them
  • Determine the average value of a function

Defining and Evaluating Definite Integrals

The Main Idea 

  • Definition of Definite Integral:
    • Generalizes the concept of area under a curve
    • [latex]\int_a^b f(x) dx = \lim_{n \to \infty} \sum_{i=1}^n f(x_i^*)\Delta x[/latex]
    • Function [latex]f(x)[/latex] is integrable if this limit exists
  • Components of Definite Integral Notation:
    • [latex]\int[/latex]: Integration symbol (elongated [latex]S[/latex])
    • [latex]a, b[/latex]: Limits of integration (lower and upper)
    • [latex]f(x)[/latex]: Integrand
    • [latex]dx[/latex]: Variable of integration
  • Integrability:
    • Continuous functions on [latex][a,b][/latex] are integrable
    • Some discontinuous functions may also be integrable
  • Evaluation Methods:
    • Using the definition (Riemann sums)
    • Geometric formulas for area
    • More advanced techniques (to be learned later)

Use the definition of the definite integral to evaluate [latex]\displaystyle\int_0^3 (2x-1) dx[/latex]. Use a right-endpoint approximation to generate the Riemann sum.

Area and the Definite Integral

The Main Idea 

  • Net Signed Area:
    • Represents the area between the curve and the [latex]x[/latex]-axis, taking into account the sign of the function
    • [latex]\int_a^b f(x) dx = A_1 - A_2[/latex]
    • [latex]A_1[/latex]: Area above [latex]x[/latex]-axis, [latex]A_2[/latex]: Area below [latex]x[/latex]-axis
    • Can be positive, negative, or zero
  • Total Area:
    • Represents the total area between the curve and the [latex]x[/latex]-axis, regardless of the function’s sign
    • [latex]\int_a^b |f(x)| dx = A_1 + A_2[/latex]
    • Always non-negative
  • Interpretation of Definite Integrals:
    • For positive functions: Area under the curve
    • For functions that change sign: Net signed area
    • Using absolute value: Total area
  • Application to Displacement:
    • Velocity function [latex]v(t)[/latex]: Area under curve represents displacement
    • Net signed area: Final position relative to starting point
    • Total area: Total distance traveled

Find the net signed area of [latex]f(x)=x-2[/latex] over the interval [latex][0,6][/latex], illustrated in the following image.

A graph of an increasing line going through (-2,-4), (0,-2), (2,0), (4,2) and (6,4). The area above the curve in quadrant four is shaded blue and labeled A2, and the area under the curve and to the left of x=6 in quadrant one is shaded and labeled A1.
Figure 5.

Find the total area between the function [latex]f(x)=2x[/latex] and the [latex]x[/latex]-axis over the interval [latex][-3,3][/latex].

Properties of the Definite Integral

The Main Idea 

  • Basic Properties of Definite Integrals:
    • Zero interval:
      • [latex]\int_a^a f(x) dx = 0[/latex]
    • Reversing limits:
      • [latex]\int_b^a f(x) dx = -\int_a^b f(x) dx[/latex]
    • Sum rule:
      • [latex]\int_a^b [f(x)+g(x)] dx = \int_a^b f(x) dx + \int_a^b g(x) dx[/latex] 
    • Difference rule:
      • [latex]\int_a^b [f(x)-g(x)] dx = \int_a^b f(x) dx - \int_a^b g(x) dx[/latex] 
    • Constant multiple:
      • [latex]\int_a^b cf(x) dx = c \int_a^b f(x) dx[/latex]
    • Splitting interval:
      • [latex]\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx[/latex]
  • Comparison Theorem (for [latex]a \le b[/latex]): 
    • Non-negative function:
      • If [latex]f(x) \ge 0[/latex] for [latex]a \le x \le b[/latex], then [latex]\int_a^b f(x) dx \ge 0[/latex] 
    • Comparing functions:
      • If [latex]f(x) \ge g(x)[/latex] for [latex]a \le x \le b[/latex], then [latex]\int_a^b f(x) dx \ge \int_a^b g(x) dx[/latex]
    • Bounded function:
      • If [latex]m \le f(x) \le M[/latex] for [latex]a \le x \le b[/latex], then [latex]m(b-a) \le \int_a^b f(x) dx \le M(b-a)[/latex]

Use the properties of the definite integral to express the definite integral of [latex]f(x)=6x^3-4x^2+2x-3[/latex] over the interval [latex][1,3][/latex] as the sum of four definite integrals.

If it is known that [latex]\displaystyle\int_1^5 f(x) dx = -3[/latex] and [latex]\displaystyle\int_2^5 f(x) dx = 4[/latex], find the value of [latex]\displaystyle\int_1^2 f(x) dx[/latex].

Average Value of a Function

The Main Idea 

  • Definition of Average Value:
    • For a function [latex]f(x)[/latex] continuous on [latex][a,b][/latex], the average value is: [latex]f_{\text{ave}} = \frac{1}{b-a} \int_a^b f(x) dx[/latex]
  • Interpretation:
    • Generalizes the concept of arithmetic mean to continuous functions
    • Represents the height of a rectangle with base [latex][a,b][/latex] and equal area to that under the curve of [latex]f(x)[/latex]
  • Derivation:
    • Based on Riemann sums:
      • [latex]\frac{1}{b-a}\lim_{n\to \infty}\sum_{i=1}^{n} f(x_i^*) \Delta x[/latex]
    • Limit of Riemann sum becomes the definite integral
  • Applications:
    • Physics: Average velocity, average power, etc.
    • Economics: Average cost, average revenue, etc.
    • Statistics: Expected value of a continuous random variable

Find the average value of [latex]f(x)=6-2x[/latex] over the interval [latex][0,3][/latex].

Find the average value of [latex]f(x) = x^2[/latex] on the interval [latex][0,2][/latex].