Techniques for Integration: Background You’ll Need 2

  • Apply properties of exponential and logarithmic functions

Exponential Functions

Exponential functions arise in many applications. One common example is population growth.

If a population starts with P0P0 individuals and then grows at an annual rate of 2%2%, its population after 11 year is

P(1)=P0+0.02P0=P0(1+0.02)=P0(1.02)P(1)=P0+0.02P0=P0(1+0.02)=P0(1.02)

Its population after 22 years is

P(2)=P(1)+0.02P(1)=P(1)(1.02)=P0(1.02)2P(2)=P(1)+0.02P(1)=P(1)(1.02)=P0(1.02)2

In general, its population after tt years is

P(t)=P0(1.02)tP(t)=P0(1.02)t,

which is an exponential function.

More generally, any function of the form f(x)=bxf(x)=bx, where b>0,b1b>0,b1, is an exponential function with base bb and exponent xx. Exponential functions have constant bases and variable exponents.

exponential function

For any real number xx, an exponential function is a function with the form

f(x)=abxf(x)=abx

where,

  • aa is a non-zero real number called the initial value and
  • bb is any positive real number (b>0b>0) such that b1b1.

Evaluating Exponential Functions

To evaluate an exponential function with the form f(x)=bxf(x)=bx, we simply substitute xx with the given value, and calculate the resulting power.

Let f(x)=2xf(x)=2x. What is f(3)f(3)?

f(x)=2xf(3)=23Substitute x=3.=8Evaluate the power.f(x)=2xf(3)=23Substitute x=3.=8Evaluate the power.

 

To evaluate an exponential function with a form other than the basic form, it is important to follow the order of operations.

Let f(x)=30(2)xf(x)=30(2)x. What is f(3)f(3)?

f(x)=30(2)xf(3)=30(2)3Substitute x=3.=30(8)Simplify the power first.=240Multiply.f(x)=30(2)xf(3)=30(2)3Substitute x=3.=30(8)Simplify the power first.=240Multiply.

Note that if the order of operations were not followed, the result would be incorrect:

f(3)=30(2)3603=216,000f(3)=30(2)3603=216,000

How To: Evaluating Exponential Functions

  1. Given an exponential function, identify aa, bb, and the value of xx you’re being asked to substitute into the function.
  2. Replace the variable xx in the function with the given number.
  3. Compute the value of bxbx. This means raising the base bb to the power of xx.
  4. If there is a coefficient aa in front of the base, multiply the result of bxbx by aa. If aa is 11, this step does not change the value.
  5. Simplify the expression if necessary. This could involve performing any additional multiplication or addition/subtraction if the function has more terms.

Let f(x)=5(3)x+1f(x)=5(3)x+1. Evaluate f(2)f(2) without using a calculator.


Suppose a particular population of bacteria is known to double in size every 44 hours. If a culture starts with 10001000 bacteria, the number of bacteria after 44 hours is n(4)=1000·2n(4)=10002. The number of bacteria after 88 hours is n(8)=n(4)·2=1000·22n(8)=n(4)2=100022.

In general, the number of bacteria after 4m4m hours is n(4m)=1000·2mn(4m)=10002m. Letting t=4mt=4m, we see that the number of bacteria after tt hours is n(t)=1000·2t/4n(t)=10002t/4.

Find the number of bacteria after 66 hours, 1010 hours, and 2424 hours.

Laws of Exponents

The Laws of Exponents are fundamental rules that govern the operations involving powers. These rules are essential for simplifying expressions and are foundational for higher-level math.

laws of exponents

  1. The Product of Powers rule states that when you multiply two exponents with the same base, you can add the exponents.
    bx·by=bx+ybxby=bx+y
  2. The Quotient of Powers rule tells us that when dividing exponents with the same base, we subtract the exponents.
    bxby=bxybxby=bxy
  3. The Power of a Power rule shows that when taking an exponent to another exponent, we multiply the exponents.
    (bx)y=bxy(bx)y=bxy
  4. The Power of a Product rule lets us know that when raising a product to an exponent, each factor in the product is raised to the exponent.
    (ab)x=axbx(ab)x=axbx
  5. The Power of a Quotient rule indicates that when a quotient is raised to an exponent, both the numerator and the denominator are raised to the exponent.
    axbx=(ab)xaxbx=(ab)x

Note: This is true for any constants a>0,b>0a>0,b>0, and for all xx and yy

Use the laws of exponents to simplify each of the following expressions.

  1. (2x2/3)3(4x1/3)2(2x2/3)3(4x1/3)2
  2. (x3y1)2(xy2)2(x3y1)2(xy2)2

When you encounter a negative exponent on a term in the denominator of a fraction, you can transform it into a positive exponent by moving the term to the numerator.

1an=an1an=an

Using this rule can significantly simplify expressions involving exponents.


Logarithmic Functions

Using our understanding of exponential functions, we can discuss their inverses, which are the logarithmic functions. 

Inverse Functions

For any one-to-one function f(x)=yf(x)=y, a function f1(x)f1(x) is an inverse function of ff if f1(y)=xf1(y)=x

The notation f1f1 is read “ff inverse.” Like any other function, we can use any variable name as the input for f1f1, so we will often write f1(x)f1(x), which we read as "f"f inverse of xx“.

Logarithmic functions come in handy when we need to consider any phenomenon that varies over a wide range of values, such as pH in chemistry or decibels in sound levels.

The exponential function f(x)=bxf(x)=bx is one-to-one, with domain (,) and range (0,). Therefore, it has an inverse function, called the logarithmic function with base b.

For any b>0,b1, the logarithmic function with base b, denoted logb, has domain (0,) and range (,), and satisfies

logb(x)=y if and only if by=x.

logarithmic functions

A logarithmic function is the inverse of an exponential function and is written as logb(x). For a given base b, it tells us the power to which b must be raised to get x.

log2(8)=3since23=8,log10(1100)=2since102=1102=1100,logb(1)=0sinceb0=1for any baseb>0.

The most commonly used logarithmic function is the function loge(x). Since this function uses natural e as its base, it is called the natural logarithm. Here we use the notation ln(x) or lnx to mean loge(x).

ln(e)=loge(e)=1ln(e3)=loge(e3)=3ln(1)=loge(1)=0

Euler’s number, denoted as e, is a fundamental mathematical constant approximately equal to 2.71828. It is the base of the natural logarithm and the natural exponential function, known for its unique properties in calculus, especially in relation to growth processes and compound interest calculations.

Before solving some equations involving exponential and logarithmic functions, let’s review the basic properties of logarithms.

Properties of Logarithms

If a,b,c>0,b1, and r is any real number, then

1.logb(ac)=logb(a)+logb(c)(Product property)2.logb(ac)=logb(a)logb(c)(Quotient property)3.logb(ar)=rlogb(a)(Power property)

Solve each of the following equations for x.

  1. ln(1x)=4
  2. log10x+log10x=2
  3. ln(2x)3ln(x2)=0

Solve each of the following equations for x.

  1. 5x=2
  2. ex+6ex=5