Derivatives of Trigonometric Functions
- [latex]\frac{dy}{dx}=2x- \sec x \tan x[/latex]
- [latex]\frac{dy}{dx}=2x \cot x-x^2 \csc^2 x[/latex]
- [latex]\frac{dy}{dx}=\frac{x \sec x \tan x- \sec x}{x^2}[/latex]
- [latex]\frac{dy}{dx}=(1- \sin x)(1- \sin x)- \cos x(x+ \cos x)[/latex]
- [latex]\frac{dy}{dx}=\frac{2 \csc^2 x}{(1+ \cot x)^2}[/latex]
-
[latex]y=−x[/latex]
-
[latex]y=x+\frac{2-3\pi}{2}[/latex]
-
[latex]y=−x[/latex]
- [latex]\frac{d^2 y}{dx^2} = 3 \cos x-x \sin x[/latex]
- [latex]\frac{d^2 y}{dx^2} = \frac{1}{2} \sin x[/latex]
- [latex]\frac{d^2 y}{dx^2} = 2\csc x( \csc^2 x + \cot^2 x)[/latex]
- [latex]x = \frac{(2n+1)\pi}{4}[/latex], where [latex]n[/latex] is an integer
- [latex](\frac{\pi}{4},1), \, (\frac{3\pi}{4},-1)[/latex]
- [latex]a=0, \, b=3[/latex]
- [latex]y^{\prime}=5 \cos (x)[/latex], increasing on [latex](0,\frac{\pi}{2}), \, (\frac{3\pi}{2},\frac{5\pi}{2})[/latex], and [latex](\frac{7\pi}{2},12)[/latex]
- [latex]\frac{d^3 y}{dx^3} = 3 \sin x[/latex]
- [latex]\frac{d^4 y}{dx^4} = 5 \cos x[/latex]
- [latex]\frac{d^3 y}{dx^3} = 720x^7-5 \tan (x) \sec^3 (x)- \tan^3 (x) \sec (x)[/latex]
The Chain Rule
- [latex]\frac{dy}{dx} = 18u^2 \cdot 7=18(7x-4)^2 \cdot 7[/latex]
- [latex]\frac{dy}{dx} = −\sin u \cdot \frac{-1}{8}=−\sin (\frac{−x}{8}) \cdot \frac{-1}{8}[/latex]
- [latex]\frac{dy}{dx} = \frac{8x-24}{2\sqrt{4u+3}}=\frac{4x-12}{\sqrt{4x^2-24x+3}}[/latex]
-
- [latex]f(u) = u^3, \, u=3x^2+1[/latex]
- [latex]\frac{dy}{dx} = 18x(3x^2+1)^2[/latex]
-
- [latex]f(u)=u^7, \, u=\frac{x}{7}+\frac{7}{x}[/latex]
- [latex]\frac{dy}{dx} = 7(\frac{x}{7}+\frac{7}{x})^6 \cdot (\frac{1}{7}-\frac{7}{x^2})[/latex]
-
- [latex]f(u)= \csc u, \, u=\pi x+1[/latex]
- [latex]\frac{dy}{dx} = −\pi \csc (\pi x+1) \cdot \cot (\pi x+1)[/latex]
-
- [latex]f(u)=-6u^{-3}, \, u= \sin x[/latex]
- [latex]\frac{dy}{dx} = 18 \sin^{-4} x \cdot \cos x[/latex]
- [latex]\frac{dy}{dx} = \frac{4}{(5-2x)^3}[/latex]
- [latex]\frac{dy}{dx} = 6(2x^3-x^2+6x+1)^2(3x^2-x+3)[/latex]
- [latex]\frac{dy}{dx} = -3(\tan x+ \sin x)^{-4} \cdot (\sec^2 x+ \cos x)[/latex]
- [latex]\frac{dy}{dx} = -7 \cos (\cos 7x) \cdot \sin 7x[/latex]
- [latex]\frac{dy}{dx} = -12 \cot^2 (4x+1) \cdot \csc^2 (4x+1)[/latex]
- [latex]10[/latex]
- [latex]-\frac{1}{8}[/latex]
- –[latex]4[/latex]
- –[latex]12[/latex]
- [latex]10\frac{3}{4}[/latex]
- [latex]y=-\frac{1}{2}x[/latex]
- [latex]x= \pm \sqrt{6}[/latex]
-
- [latex]-\frac{200}{343}[/latex] m/s
- [latex]\frac{600}{2401} \, \text{m/s}^2[/latex]
- The train is slowing down since velocity and acceleration have opposite signs
-
- [latex]C^{\prime}(x)=0.0003x^2-0.04x+3[/latex]
- [latex]\frac{dC}{dt}=100 \cdot (0.0003x^2-0.04x+3)[/latex]
- Approximately [latex]$90,300[/latex] per week
-
- [latex]\frac{dS}{dt}=-\frac{8\pi r^2}{(t+1)^3}[/latex]
- The volume is decreasing at a rate of [latex]-\frac{\pi}{36} \, \text{ft}^3/\text{min}[/latex].
- [latex]\approx 2.3[/latex] ft/hr
Derivatives of Inverse Functions
-
- [latex](f^{-1})^{\prime}(1) \approx 2[/latex]
-
- [latex](f^{-1})^{\prime}(1) \approx -1/\sqrt{3}[/latex]
-
- [latex]6[/latex]
- [latex]x=f^{-1}(y)=(\frac{y+3}{2})^{1/3}[/latex]
- [latex]\frac{1}{6}[/latex]
-
- [latex]1[/latex]
- [latex]x=f^{-1}(y)= \sin^{-1} y[/latex]
- [latex]1[/latex]
- [latex]\frac{1}{5}[/latex]
- [latex]\frac{1}{3}[/latex]
- [latex]1[/latex]
-
- [latex]4[/latex]
- [latex]y=4x[/latex]
-
- [latex]-\frac{1}{13}[/latex]
- [latex]y=-\frac{1}{13}x+\frac{18}{13}[/latex]
- [latex]\large \frac{2x}{\sqrt{1-x^4}}[/latex]
- [latex]\large \frac{-1}{\sqrt{1-x^2}}[/latex]
- [latex]\large \frac{3(1 + \tan^{-1} x)^2}{1+x^2}[/latex]
- [latex]\large \frac{-1}{(1+x^2)(\tan^{-1} x)^2}[/latex]
- [latex]\large \frac{x}{(5-x^2)\sqrt{4-x^2}}[/latex]
- –[latex]1[/latex]
- [latex]\frac{1}{2}[/latex]
- [latex]\frac{1}{10}[/latex]
-
- [latex]v(t)=\frac{1}{1+t^2}[/latex]
- [latex]a(t)=\frac{-2t}{(1+t^2)^2}[/latex]
- [latex]v(2)=0.2, \, v(4)=0.06, \, v(6)=0.03; \, a(2)=-0.16, \, a(4)=-0.028, \, a(6)=-0.0088[/latex]
- The hockey puck is decelerating/slowing down at [latex]2[/latex], [latex]4[/latex], and [latex]6[/latex] seconds.
- –[latex]0.0168[/latex] radians per foot
-
- [latex]\frac{d\theta}{dx}=\frac{10}{100+x^2}-\frac{40}{1600+x^2}[/latex]
- [latex]\frac{18}{325}, \, \frac{9}{340}, \, \frac{42}{4745}, \, 0[/latex]
- As a person moves farther away from the screen, the viewing angle is increasing, which implies that as he or she moves farther away, his or her screen vision is widening.
- [latex]-\frac{54}{12905}, \, -\frac{3}{500}, \, -\frac{198}{29945}, \, -\frac{9}{1360}[/latex]
- As the person moves beyond [latex]20[/latex] feet from the screen, the viewing angle is decreasing. The optimal distance the person should sit for maximizing the viewing angle is [latex]20[/latex] feet
Implicit Differentiation
- [latex]\frac{dy}{dx}=\frac{-2x}{y}[/latex]
- [latex]\frac{dy}{dx}=\frac{x}{3y}-\frac{y}{2x}[/latex]
- [latex]\frac{dy}{dx}=\large \frac{y-\frac{y}{2\sqrt{x+4}}}{\sqrt{x+4}-x}[/latex]
- [latex]\frac{dy}{dx}=\large \frac{y^2 \cos(xy)}{2y- \sin(xy)-xy \cos xy}[/latex]
- [latex]\frac{dy}{dx}=\large \frac{-3x^2 y-y^3}{x^3+3xy^2}[/latex]
[latex]y=-\frac{1}{2}x+2[/latex]
[latex]y=\large \frac{1}{\pi +12}x-\frac{3\pi +38}{\pi +12}[/latex]
[latex]y=0[/latex]
-
- [latex]y=−x+2[/latex]
- [latex](3,-1)[/latex]
-
- [latex](\pm \sqrt{7},0)[/latex]
- Slope is [latex]-2[/latex] at both intercepts
- They are parallel since the slope is the same at both intercepts.
- [latex]y=−x+1[/latex]
-
- –[latex]0.5926[/latex]
- When [latex]$81[/latex] is spent on labor and [latex]$16[/latex] is spent on capital, the amount spent on capital is decreasing by [latex]$0.5926[/latex] per [latex]$1[/latex] spent on labor.
- [latex]\frac{dy}{dx}=-8[/latex]
- [latex]\frac{dy}{dx}=-2.67[/latex]
- [latex]y^{\prime}=-\frac{1}{\sqrt{1-x^2}}[/latex]
Derivatives of Exponential and Logarithmic Functions
- [latex]f^{\prime}(x) = 2xe^x+x^2 e^x[/latex]
- [latex]f^{\prime}(x) = e^{x^3 \ln x}(3x^2 \ln x+x^2)[/latex]
- [latex]f^{\prime}(x) = \dfrac{4}{(e^x+e^{−x})^2}[/latex]
- [latex]f^{\prime}(x) = 2^{4x+2} \cdot \ln 2+8x[/latex]
- [latex]f^{\prime}(x) = \pi x^{\pi -1} \cdot \pi^x + x^{\pi} \cdot \pi^x \ln \pi[/latex]
- [latex]f^{\prime}(x) = \frac{5}{2(5x-7)}[/latex]
- [latex]f^{\prime}(x) = \frac{\tan x}{\ln 10}[/latex]
- [latex]f^{\prime}(x) = 2^x \cdot \ln 2 \cdot \log_3 7^{x^2-4} + 2^x \cdot \frac{2x \ln 7}{\ln 3}[/latex]
- [latex]\frac{dy}{dx} = (\sin 2x)^{4x} [4 \cdot \ln(\sin 2x) + 8x \cdot \cot 2x][/latex]
- [latex]\frac{dy}{dx} = x^{\log_2 x} \cdot \frac{2 \ln x}{x \ln 2}[/latex]
- [latex]\frac{dy}{dx} = x^{\cot x} \cdot [−\csc^2 x \cdot \ln x+\frac{\cot x}{x}][/latex]
- [latex]\frac{dy}{dx} = x^{-1/2}(x^2+3)^{2/3}(3x-4)^4 \cdot [\frac{-1}{2x}+\frac{4x}{3(x^2+3)}+\frac{12}{3x-4}][/latex]
[latex]y=\frac{-1}{5+5 \ln 5}x+(5+\frac{1}{5+5 \ln 5})[/latex]
-
- [latex]x=e \approx 2.718[/latex]
- [latex]y^{\prime}>0[/latex] on [latex](e,\infty)[/latex], and [latex]y^{\prime}<0[/latex] on [latex](0,e)[/latex]
-
- [latex]P=500,000(1.05)^t[/latex] individuals
- [latex]P^{\prime}(t)=24395 \cdot (1.05)^t[/latex] individuals per year
- [latex]39,737[/latex] individuals per year
-
- At the beginning of 1960 there were [latex]5.3[/latex] thousand cases of the disease in New York City. At the beginning of 1963 there were approximately [latex]723[/latex] cases of the disease in New York City.
- At the beginning of 1960 the number of cases of the disease was decreasing at rate of [latex]-4.611[/latex] thousand per year; at the beginning of 1963, the number of cases of the disease was decreasing at a rate of [latex]-0.2808[/latex] thousand per year.
- [latex]p=35741(1.045)^t[/latex]
-
Years since 1790 [latex]P''[/latex] [latex]0[/latex] [latex]69.25[/latex] [latex]10[/latex] [latex]107.5[/latex] [latex]20[/latex] [latex]167.0[/latex] [latex]30[/latex] [latex]259.4[/latex] [latex]40[/latex] [latex]402.8[/latex] [latex]50[/latex] [latex]625.5[/latex] [latex]60[/latex] [latex]971.4[/latex] [latex]70[/latex] [latex]1508.5[/latex]