- Identify zeros of functions using equations, graphs, and tables
- Interpret graphs and tables to describe their behavior including properties of symmetry
- Make new functions from two or more given functions
Functions
The Main Idea
- A function is a special type of relation where each input is associated with exactly one output.
- Functions are used to describe relationships between two sets.
- The input of a function is called the independent variable, often denoted as [latex]x[/latex].
- The output of a function is called the dependent variable, often denoted as [latex]y[/latex].
- Function notation: [latex]y = f(x)[/latex] is read as “[latex]y[/latex] equals [latex]f[/latex] of [latex]x[/latex].”
- Functions can be represented using tables, graphs, or formulas (algebraic expressions).
Consider the function [latex]g(x) = x² - 4x + 3[/latex]
- Evaluate [latex]g(3)[/latex]
- Create a small table of values for [latex]x = 0, 1, 2, 3, 4[/latex]
The Domain and Range of a Function
The Main Idea
- The domain of a function is the complete set of possible input values ([latex]x[/latex]-values).
- The range of a function is the complete set of possible output values ([latex]y[/latex]-values).
- Domain restrictions can occur due to mathematical limitations (e.g., division by zero, square roots of negative numbers).
- Set notation and interval notation are used to describe domains and ranges.
- The union symbol ([latex]\cup[/latex]) is used to describe domains and ranges with gaps or breaks.
Determine the domain and range of the function[latex]f(x) = |x + 1| - 3[/latex].
Intercepts of a Function
The Main Idea
- [latex]x[/latex]-intercepts are points where a function’s graph crosses the [latex]x[/latex]-axis ([latex]f(x) = 0[/latex]).
- [latex]x[/latex]-intercepts are also called zeros or roots of the function.
- The [latex]y[/latex]-intercept is the point where a function’s graph crosses the [latex]y[/latex]-axis ([latex]x = 0[/latex]).
- A function can have multiple [latex]x[/latex]-intercepts but at most one y-intercept.
- [latex]x[/latex]-intercepts provide information about the shape of the function’s graph.
- The [latex]y[/latex]-intercept represents the function’s output when the input is zero.
Consider the function [latex]f(x)=\sqrt{x+3}+1[/latex].
- Find all zeros of [latex]f[/latex].
- Find the [latex]y[/latex]-intercept (if any).
- Sketch a graph of [latex]f[/latex].
Find the zeros of [latex]f(x)=x^3-5x^2+6x[/latex].
Symmetry of Functions
The Main Idea
- Function Symmetry:
- Symmetry about the [latex]y[/latex]-axis: [latex]f(x) = f(-x)[/latex] (even functions)
- Symmetry about the origin: [latex]f(-x) = -f(x)[/latex] (odd functions)
- Some functions are neither even nor odd
- Absolute Value Function:
- Defined as [latex]f(x) = |x| = x[/latex]if [latex]x ≥ 0[/latex], and [latex]-x[/latex] if [latex]x < 0[/latex]
- Always outputs non-negative values
- Symmetric about the [latex]y[/latex]-axis (even function)
Figure 13. (a) A graph that is symmetric about the [latex]y[/latex]-axis. (b) A graph that is symmetric about the origin.
If we are given the graph of a function, it is easy to see whether the graph has one of these symmetry properties. But without a graph, how can we determine algebraically whether a function [latex]f[/latex] has symmetry? Looking at Figure 13(a) again, we see that since [latex]f[/latex] is symmetric about the [latex]y[/latex]-axis, if the point [latex](x,y)[/latex] is on the graph, the point [latex](−x,y)[/latex] is on the graph. In other words, [latex]f(−x)=f(x)[/latex]. If a function [latex]f[/latex] has this property, we say [latex]f[/latex] is an even function, which has symmetry about the [latex]y[/latex]-axis. For example, [latex]f(x)=x^2[/latex] is even because
In contrast, looking at Figure 13(b) again, if a function [latex]f[/latex] is symmetric about the origin, then whenever the point [latex](x,y)[/latex] is on the graph, the point [latex](−x,−y)[/latex] is also on the graph. In other words, [latex]f(−x)=−f(x)[/latex]. If [latex]f[/latex] has this property, we say [latex]f[/latex] is an odd function, which has symmetry about the origin. For example, [latex]f(x)=x^3[/latex] is odd because
Determine whether [latex]f(x)=4x^3-5x[/latex] is even, odd, or neither.
Absolute Value Functions
For the function [latex]f(x)=|x+2|-4[/latex], find the domain and range.
Composing Functions
The Main Idea
- Combining Functions with Mathematical Operators:
- Sum: [latex](f + g)(x) = f(x) + g(x)[/latex]
- Difference :[latex](f - g)(x) = f(x) - g(x)[/latex]
- Product: [latex](f · g)(x) = f(x) · g(x)[/latex]
- Quotient: [latex](\frac{f}{g})(x) = \frac{f(x)}{g(x)}\text{, where }g(x) ≠ 0[/latex]
- Composite Functions:
- [latex](f ∘ g)(x) = f(g(x))[/latex]
- The output of g becomes the input of f
- Order matters: [latex](f ∘ g)(x) ≠ (g ∘ f)(x)[/latex] in general
In general [latex]f\circ g[/latex] and [latex]g\circ f[/latex] are different functions. In other words in many cases [latex]f\left(g\left(x\right)\right)\ne g\left(f\left(x\right)\right)[/latex] for all [latex]x[/latex].
For example if [latex]f\left(x\right)={x}^{2}[/latex] and [latex]g\left(x\right)=x+2[/latex], then
[latex]\begin{align}f\left(g\left(x\right)\right)&=f\left(x+2\right) \\[2mm] &={\left(x+2\right)}^{2} \\[2mm] &={x}^{2}+4x+4\hfill \end{align}[/latex]
but
[latex]\begin{align}g\left(f\left(x\right)\right)&=g\left({x}^{2}\right) \\[2mm] \text{ }&={x}^{2}+2\hfill \end{align}[/latex]
Consider the functions [latex]f(x)=x^2+1[/latex] and [latex]g(x)=\frac{1}{x}[/latex].
- Find [latex](g\circ f)(x)[/latex] and state its domain and range.
- Evaluate [latex](g\circ f)(4)[/latex] and [latex](g\circ f)\left(-\frac{1}{2}\right)[/latex].
Let [latex]f(x)=2-5x[/latex]
Let [latex]g(x)=\sqrt{x}[/latex]
Find [latex](f\circ g)(x)[/latex]
Consider the functions [latex]f[/latex] and [latex]g[/latex] described below.
[latex]x[/latex] | [latex]-3[/latex] | [latex]-2[/latex] | [latex]-1[/latex] | [latex]0[/latex] | [latex]1[/latex] | [latex]2[/latex] | [latex]3[/latex] | [latex]4[/latex] |
[latex]f(x)[/latex] | [latex]0[/latex] | [latex]4[/latex] | [latex]2[/latex] | [latex]4[/latex] | [latex]-2[/latex] | [latex]0[/latex] | [latex]-2[/latex] | [latex]4[/latex] |
[latex]x[/latex] | [latex]-4[/latex] | [latex]-2[/latex] | [latex]0[/latex] | [latex]2[/latex] | [latex]4[/latex] |
[latex]g(x)[/latex] | [latex]1[/latex] | [latex]0[/latex] | [latex]3[/latex] | [latex]0[/latex] | [latex]5[/latex] |
- Evaluate [latex](f\circ f)(3)[/latex] and [latex](f\circ f)(1)[/latex].
- State the domain and range of [latex](f\circ f)(x)[/latex].
If items are on sale for [latex]10\%[/latex] off their original price, and a customer has a coupon for an additional [latex]30\%[/latex] off, what will be the final price for an item that is originally [latex]x[/latex] dollars, after applying the coupon to the sale price?