Physical Applications of Integration: Get Stronger Answer Key

Physical Applications

  1. [latex]150[/latex] ft-lb
  2. [latex]200\text{J}[/latex]
  3. [latex]1[/latex] J
  4. [latex]\frac{39}{2}[/latex]
  5. [latex]\text{ln}(243)[/latex]
  6. [latex]\frac{332\pi }{15}[/latex]
  7. [latex]100\pi[/latex]
  8. [latex]20\pi \sqrt{15}[/latex]
  9. [latex]6[/latex] J
  10. [latex]5[/latex] cm
  11. [latex]36[/latex] J
  12. [latex]18,750[/latex] ft-lb
  13. [latex]\frac{32}{3}×{10}^{9}\text{ft-lb}[/latex]
  14. [latex]8.65×{10}^{5}\text{J}[/latex]
    1. [latex]3,000,000[/latex] lb,
    2. [latex]749,000[/latex] lb
  15. [latex]23.25\pi[/latex] million ft-lb
  16. [latex]\frac{A\rho {H}^{2}}{2}[/latex]
  17. Answers may vary

Moments and Centers of Mass

  1. [latex]\frac{5}{4}[/latex]
  2. [latex](\frac{2}{3},\frac{2}{3})[/latex]
  3. [latex](\frac{7}{4},\frac{3}{2})[/latex]
  4. [latex]\frac{3L}{4}[/latex]
  5. [latex]\frac{\pi }{2}[/latex]
  6. [latex]\frac{{e}^{2}+1}{{e}^{2}-1}[/latex]
  7. [latex]\frac{{\pi }^{2}-4}{\pi }[/latex]
  8. [latex]\frac{1}{4}(1+{e}^{2})[/latex]
  9. [latex](\frac{a}{3},\frac{b}{3})[/latex]
  10. [latex](0,\frac{\pi }{8})[/latex]
  11. [latex](0,3)[/latex]
  12. [latex](0,\frac{4}{\pi })[/latex]
  13. [latex](\frac{5}{8},\frac{1}{3})[/latex]
  14. [latex]\frac{m\pi }{3}[/latex]
  15. [latex]\pi {a}^{2}b[/latex]
  16. [latex](\frac{4}{3\pi },\frac{4}{3\pi })[/latex]
  17. [latex](\frac{1}{2},\frac{2}{5})[/latex]
  18. [latex](0,\frac{28}{9\pi })[/latex]
  19. Center of mass: [latex](\frac{a}{6},\frac{4{a}^{2}}{5}),[/latex] volume: [latex]\frac{2\pi {a}^{4}}{9}[/latex]
  20. Volume: [latex]2{\pi }^{2}{a}^{2}(b+a)[/latex]