Newton’s Method: Learn It 3

Other Iterative Processes

As mentioned earlier, Newton’s method is a type of iterative process. We now look at an example of a different type of iterative process.

Consider a function [latex]F[/latex] and an initial number [latex]x_0[/latex]. Define the subsequent numbers [latex]x_n[/latex] by the formula [latex]x_n=F(x_{n-1})[/latex].

This process is an iterative process that creates a list of numbers [latex]x_0,x_1,x_2, \cdots ,x_n, \cdots[/latex]. This list of numbers may approach a finite number [latex]x^{*}[/latex] as [latex]n[/latex] gets larger, or it may not.

 In the next example, we see an example of a function [latex]F[/latex] and an initial guess [latex]x_0[/latex] such that the resulting list of numbers approaches a finite value.

Let [latex]F(x)=\frac{1}{2}x+4[/latex] and let [latex]x_0=0[/latex]. For all [latex]n \ge 1[/latex], let [latex]x_n=F(x_{n-1})[/latex]. Find the values [latex]x_1,x_2,x_3,x_4,x_5[/latex]. Make a conjecture about what happens to this list of numbers [latex]x_1,x_2,x_3, \cdots,x_n, \cdots[/latex] as [latex]n\to \infty[/latex]. If the list of numbers [latex]x_1,x_2,x_3, \cdots[/latex] approaches a finite number [latex]x^*[/latex], then [latex]x^*[/latex] satisfies [latex]x^*=F(x^*)[/latex], and [latex]x^*[/latex] is called a fixed point of [latex]F[/latex].

Consider the function [latex]F(x)=\frac{1}{3}x+6[/latex]. Let [latex]x_0=0[/latex] and let [latex]x_n=F(x_{n-1})[/latex] for [latex]n \ge 2[/latex]. Find [latex]x_1,x_2,x_3,x_4,x_5[/latex]. Make a conjecture about what happens to the list of numbers [latex]x_1,x_2,x_3, \cdots, x_n, \cdots[/latex] as [latex]n\to \infty[/latex].