- Define and Identify the highest and lowest points of a function on a graph, both overall and within specific sections
- Locate points on a function within a specific range where the slope is zero or undefined (critical points)
- Explain how to use critical points to find the highest or lowest values of a function within a limited range
Extrema and Critical Points
Absolute Extrema
The Main Idea
- Absolute Extrema:
- Absolute Maximum:
- [latex]f(c) \ge f(x)[/latex] for all [latex]x[/latex] in the interval
- Absolute Minimum:
- [latex]f(c) \le f(x)[/latex] for all [latex]x[/latex] in the interval
- Can be positive, negative, or zero
- Absolute Maximum:
- Extreme Value Theorem:
- For a continuous function [latex]f[/latex] on a closed interval [latex][a,b][/latex]:
- There exists a point where [latex]f[/latex] has an absolute maximum
- There exists a point where [latex]f[/latex] has an absolute minimum
- For a continuous function [latex]f[/latex] on a closed interval [latex][a,b][/latex]:
- Conditions for Extrema:
- Continuity is crucial for the existence of extrema
- Closed, bounded intervals guarantee extrema for continuous functions
- Types of Domains:
- Infinite intervals may lack extrema
- Open intervals may lack extrema even for continuous functions
- Discontinuities can prevent extrema from existing
Analyze the function [latex]f(x) = x^3 - 3x[/latex] on the interval [latex][-2, 2][/latex] for absolute extrema.
Local Extrema and Critical Points
The Main Idea
- Local Extrema:
- Local Maximum:
- [latex]f(c) \ge f(x)[/latex] for all [latex]x[/latex] in some open interval containing [latex]c[/latex]
- Local Minimum:
- [latex]f(c) \le f(x)[/latex] for all [latex]x[/latex] in some open interval containing [latex]c[/latex]
- Local Maximum:
- Critical Points:
- Interior point [latex]c[/latex] where [latex]f'(c) = 0[/latex] or [latex]f'(c)[/latex] is undefined
- Candidates for local extrema
- Fermat’s Theorem:
- If [latex]f[/latex] has a local extremum at [latex]c[/latex] and [latex]f[/latex] is differentiable at [latex]c[/latex], then [latex]f'(c) = 0[/latex]
- Key Relationships:
- Local extrema occur only at critical points
- Not all critical points yield local extrema
- Endpoint extrema are not considered local extrema
- Types of Critical Points:
- Horizontal tangent line: [latex]f'(c) = 0[/latex]
- Vertical tangent line or corner point: [latex]f'(c)[/latex] undefined
Find all critical points for [latex]f(x)=x^3-\frac{1}{2}x^2-2x+1[/latex].
Find the critical points of [latex]f(x) = x^{2/3}(x-2)[/latex] and determine if they correspond to local extrema.
Locating Absolute Extrema
The Main Idea
- Extreme Value Theorem:
- A continuous function on a closed, bounded interval has both an absolute maximum and minimum
- Location of Absolute Extrema:
- Occur at endpoints of the interval or at critical points within the interval
- Critical Points:
- Points where [latex]f'(x) = 0[/latex] or [latex]f'(x)[/latex] is undefined
- Procedure for Finding Absolute Extrema:
- Evaluate function at endpoints
- Find and evaluate function at critical points within the interval
- Compare all values to determine absolute maximum and minimum
- Interior vs. Endpoint Extrema:
- Absolute extrema at interior points are also local extrema
- Endpoint extrema are not considered local extrema
Find the absolute maximum and absolute minimum of [latex]f(x)=x^2-4x+3[/latex] over the interval [latex][1,4][/latex].
Find the absolute extrema of [latex]f(x) = x^3 - 6x^2 + 9x[/latex] on the interval [latex][0,4][/latex].