End Behavior Cont.
Determining End Behavior for Transcendental Functions
Trigonometric functions
The six basic trigonometric functions are periodic and do not approach a finite limit as [latex]x\to \pm \infty[/latex].
For example, [latex]\sin x[/latex] oscillates between 1 and -1 (Figure 19). The tangent function [latex]x[/latex] has an infinite number of vertical asymptotes as [latex]x\to \pm \infty[/latex]; therefore, it does not approach a finite limit nor does it approach [latex]\pm \infty[/latex] as [latex]x\to \pm \infty[/latex] as shown in (Figure 20).
![The function f(x) = sin x is graphed.](https://s3-us-west-2.amazonaws.com/courses-images/wp-content/uploads/sites/2332/2018/01/11211121/CNX_Calc_Figure_04_06_011.jpg)
![The function f(x) = tan x is graphed.](https://s3-us-west-2.amazonaws.com/courses-images/wp-content/uploads/sites/2332/2018/01/11211123/CNX_Calc_Figure_04_06_012.jpg)
Exponential functions
Recall that for any base [latex]b>0, \, b\ne 1[/latex], the function [latex]y=b^x[/latex] is an exponential function with domain [latex](−\infty ,\infty )[/latex] and range [latex](0,\infty )[/latex]. If [latex]b>1, \, y=b^x[/latex] is increasing over [latex](−\infty ,\infty )[/latex].If [latex]0
For the natural exponential function [latex]f(x)=e^x[/latex], [latex]e\approx 2.718>1[/latex]. Therefore, [latex]f(x)=e^x[/latex] is increasing on [latex](−\infty ,\infty )[/latex] and the range is [latex](0,\infty)[/latex]. The exponential function [latex]f(x)=e^x[/latex] approaches [latex]\infty[/latex] as [latex]x\to \infty[/latex] and approaches 0 as [latex]x\to −\infty[/latex].
[latex]x[/latex] | [latex]-5[/latex] | [latex]-2[/latex] | [latex]0[/latex] | [latex]2[/latex] | [latex]5[/latex] |
[latex]e^x[/latex] | [latex]0.00674[/latex] | [latex]0.135[/latex] | [latex]1[/latex] | [latex]7.389[/latex] | [latex]148.413[/latex] |
![The function f(x) = ex is graphed.](https://s3-us-west-2.amazonaws.com/courses-images/wp-content/uploads/sites/2332/2018/01/11211126/CNX_Calc_Figure_04_06_013.jpg)
Recall that the natural logarithm function [latex]f(x)=\ln (x)[/latex] is the inverse of the natural exponential function [latex]y=e^x[/latex]. Therefore, the domain of [latex]f(x)=\ln (x)[/latex] is [latex](0,\infty )[/latex] and the range is [latex](−\infty ,\infty )[/latex].
The graph of [latex]f(x)=\ln (x)[/latex] is the reflection of the graph of [latex]y=e^x[/latex] about the line [latex]y=x[/latex]. Therefore, [latex]\ln (x)\to −\infty[/latex] as [latex]x\to 0^+[/latex] and [latex]\ln (x)\to \infty[/latex] as [latex]x\to \infty[/latex].
[latex]x[/latex] | [latex]0.01[/latex] | [latex]0.1[/latex] | [latex]1[/latex] | [latex]10[/latex] | [latex]100[/latex] |
[latex]\ln (x)[/latex] | [latex]-4.605[/latex] | [latex]-2.303[/latex] | [latex]0[/latex] | [latex]2.303[/latex] | [latex]4.605[/latex] |
![The function f(x) = ln(x) is graphed.](https://s3-us-west-2.amazonaws.com/courses-images/wp-content/uploads/sites/2332/2018/01/11211128/CNX_Calc_Figure_04_06_014.jpg)
Find the limits as [latex]x\to \infty[/latex] and [latex]x\to −\infty[/latex] for [latex]f(x)=\frac{(2+3e^x)}{(7-5e^x)}[/latex] and describe the end behavior of [latex]f[/latex].