Limits at Infinity and Asymptotes: Learn It 5

End Behavior Cont.

Determining End Behavior for Transcendental Functions

Trigonometric functions

The six basic trigonometric functions are periodic and do not approach a finite limit as [latex]x\to \pm \infty[/latex].

For example, [latex]\sin x[/latex] oscillates between 1 and -1 (Figure 19). The tangent function [latex]x[/latex] has an infinite number of vertical asymptotes as [latex]x\to \pm \infty[/latex]; therefore, it does not approach a finite limit nor does it approach [latex]\pm \infty[/latex] as [latex]x\to \pm \infty[/latex] as shown in (Figure 20).

The function f(x) = sin x is graphed.
Figure 19. The function [latex]f(x)= \sin x[/latex] oscillates between 1 and -1 as [latex]x\to \pm \infty [/latex]
The function f(x) = tan x is graphed.
Figure 20. The function [latex]f(x)= \tan x[/latex] does not approach a limit and does not approach [latex]\pm \infty [/latex] as [latex]x\to \pm \infty [/latex]

Exponential functions

Recall that for any base [latex]b>0, \, b\ne 1[/latex], the function [latex]y=b^x[/latex] is an exponential function with domain [latex](−\infty ,\infty )[/latex] and range [latex](0,\infty )[/latex]. If [latex]b>1, \, y=b^x[/latex] is increasing over [latex](−\infty ,\infty )[/latex].If [latex]0

For the natural exponential function [latex]f(x)=e^x[/latex], [latex]e\approx 2.718>1[/latex]. Therefore, [latex]f(x)=e^x[/latex] is increasing on [latex](−\infty ,\infty )[/latex] and the range is [latex](0,\infty)[/latex]. The exponential function [latex]f(x)=e^x[/latex] approaches [latex]\infty[/latex] as [latex]x\to \infty[/latex] and approaches 0 as [latex]x\to −\infty[/latex].

End behavior of the natural exponential function
[latex]x[/latex] [latex]-5[/latex] [latex]-2[/latex] [latex]0[/latex] [latex]2[/latex] [latex]5[/latex]
[latex]e^x[/latex] [latex]0.00674[/latex] [latex]0.135[/latex] [latex]1[/latex] [latex]7.389[/latex] [latex]148.413[/latex]
The function f(x) = ex is graphed.
Figure 21. The exponential function approaches zero as [latex]x\to −\infty [/latex] and approaches [latex]\infty [/latex] as [latex]x\to \infty[/latex].

Recall that the natural logarithm function [latex]f(x)=\ln (x)[/latex] is the inverse of the natural exponential function [latex]y=e^x[/latex]. Therefore, the domain of [latex]f(x)=\ln (x)[/latex] is [latex](0,\infty )[/latex] and the range is [latex](−\infty ,\infty )[/latex].

The graph of [latex]f(x)=\ln (x)[/latex] is the reflection of the graph of [latex]y=e^x[/latex] about the line [latex]y=x[/latex]. Therefore, [latex]\ln (x)\to −\infty[/latex] as [latex]x\to 0^+[/latex] and [latex]\ln (x)\to \infty[/latex] as [latex]x\to \infty[/latex].

End behavior of the natural logarithm function
[latex]x[/latex] [latex]0.01[/latex] [latex]0.1[/latex] [latex]1[/latex] [latex]10[/latex] [latex]100[/latex]
[latex]\ln (x)[/latex] [latex]-4.605[/latex] [latex]-2.303[/latex] [latex]0[/latex] [latex]2.303[/latex] [latex]4.605[/latex]
The function f(x) = ln(x) is graphed.
Figure 22. The natural logarithm function approaches [latex]\infty [/latex] as [latex]x\to \infty[/latex].

Find the limits as [latex]x\to \infty[/latex] and [latex]x\to −\infty[/latex] for [latex]f(x)=\frac{(2+3e^x)}{(7-5e^x)}[/latex] and describe the end behavior of [latex]f[/latex].