Determine limits and predict how functions behave as x increases or decreases indefinitely
Identify and distinguish horizontal and slanting lines that a graph approaches but never touches
Use a function’s derivatives to accurately sketch its graph
Limits at Infinity
We have shown how to use the first and second derivatives of a function to describe the shape of a graph. To graph a function f defined on an unbounded domain, we also need to know the behavior of f as x→±∞. In this section, we define limits at infinity and show how these limits affect the graph of a function. At the end of this section, we outline a strategy for graphing an arbitrary function f.
We begin by examining what it means for a function to have a finite limit at infinity. Then we study the idea of a function with an infinite limit at infinity. We have looked at vertical asymptotes in other modules; in this section, we deal with horizontal and oblique asymptotes.
Limits at Infinity and Horizontal Asymptotes
Recall that limx→af(x)=L means f(x) becomes arbitrarily close to L as long as x is sufficiently close to a. We can extend this idea to limits at infinity.
Consider the function f(x)=2+1x.
As can be seen graphically in Figure 1 and numerically in the table beneath it, as the values of x get larger, the values of f(x) approach 2. We say the limit as x approaches ∞ of f(x) is 2 and write:
limx→∞f(x)=2.
Similarly, for x<0, as the values |x| get larger, the values of f(x) approaches 2. We say the limit as x approaches −∞ of f(x) is 2 and write:
limx→af(x)=2.
Figure 1. The function approaches the asymptote y=2 as x approaches ±∞.
Values of a function f as x→±∞
x
10
100
1,000
10,000
2+1x
2.1
2.01
2.001
2.0001
x
−10
−100
−1000
−10,000
2+1x
1.9
1.99
1.999
1.9999
More generally, for any function f, we say the limit as x→∞ of f(x) is L if f(x) becomes arbitrarily close to L as long as x is sufficiently large. In that case, we write:
limx→∞f(x)=L.
Similarly, we say the limit as x→−∞ of f(x) is L if f(x) becomes arbitrarily close to L as long as x<0 and |x| is sufficiently large. In that case, we write:
limx→−∞f(x)=L.
We now look at the definition of a function having a limit at infinity.
limit at infinity (informal)
If the values of f(x) become arbitrarily close to L as x becomes sufficiently large, we say the function f has a limit at infinity and write:
limx→∞f(x)=L
If the values of f(x) becomes arbitrarily close to L for x<0 as |x| becomes sufficiently large, we say that the function f has a limit at negative infinity and write:
limx→−∞f(x)=L
If the values f(x) are getting arbitrarily close to some finite value L as x→∞ or x→−∞, the graph of f approaches the line y=L. In that case, the line y=L is a horizontal asymptote of f.
For the function f(x)=1x, since limx→∞f(x)=0, the line y=0 is a horizontal asymptote of f(x)=1x.
horizontal asymptote
If limx→∞f(x)=L or limx→−∞f(x)=L, we say the line y=L is a horizontal asymptote of f.
Figure 2: As x→∞, the values of f are getting arbitrarily close to L. The line y=L is a horizontal asymptote of f. (b) As x→−∞, the values of f are getting arbitrarily close to M. The line y=M is a horizontal asymptote of f.
A function cannot cross a vertical asymptote because the graph must approach infinity (or negative infinity) from at least one direction as x approaches the vertical asymptote. However, a function may cross a horizontal asymptote. In fact, a function may cross a horizontal asymptote an unlimited number of times.
The function f(x)=cosxx+1 shown below intersects the horizontal asymptote y=1 an infinite number of times as it oscillates around the asymptote with ever-decreasing amplitude.
Figure 3. The graph of f(x)=cosx/x+1 crosses its horizontal asymptote y=1 an infinite number of times.
The algebraic limit laws and squeeze theorem we introduced earlier also apply to limits at infinity. We illustrate how to use these laws to compute several limits at infinity.
For each of the following functions f, evaluate limx→∞f(x) and limx→−∞f(x). Determine the horizontal asymptote(s) for f.
Similarly, limx→−∞f(x)=5. Therefore, f(x)=5−2x2 has a horizontal asymptote of y=5 and f approaches this horizontal asymptote as x→±∞ as shown in the following graph.
Figure 4. This function approaches a horizontal asymptote as x→±∞.
Since −1≤sinx≤1 for all x, we have:
−1x≤sinxx≤1x
for all x≠0. Also, since,
limx→∞−1x=0=limx→∞1x,
we can apply the squeeze theorem to conclude that:
limx→∞sinxx=0
Similarly,
limx→−∞sinxx=0
Thus, f(x)=sinxx has a horizontal asymptote of y=0 and f(x) approaches this horizontal asymptote as x→±∞ as shown in the following graph.
Figure 5. This function crosses its horizontal asymptote multiple times.
To evaluate limx→∞tan−1(x) and limx→−∞tan−1(x), we first consider the graph of y=tan(x) over the interval (−π/2,π/2) as shown in the following graph. Figure 6. The graph of tanx has vertical asymptotes at x=±π2
Since limx→(π/2)−tanx=∞, it follows that:
limx→∞tan−1(x)=π2
Similarly, since limx→(π/2)+tanx=−∞, it follows that:
limx→−∞tan−1(x)=−π2
As a result, y=π2 and y=−π2 are horizontal asymptotes of f(x)=tan−1(x) as shown in the following graph.
Figure 7. This function has two horizontal asymptotes.
Watch the following video to see the worked solution to this example.
For closed captioning, open the video on its original page by clicking the Youtube logo in the lower right-hand corner of the video display. In YouTube, the video will begin at the same starting point as this clip, but will continue playing until the very end.
Sometimes the values of a function f become arbitrarily large as x→∞ (or as x→−∞). In this case, we write limx→∞f(x)=∞ (or limx→−∞f(x)=∞).
On the other hand, if the values of f are negative but become arbitrarily large in magnitude as x→∞ (or as x→−∞), we write limx→∞f(x)=−∞ (or limx→−∞f(x)=−∞).
Consider the function f(x)=x3.
Figure 8. For this function, the functional values approach infinity as x→±∞.
Values of a power function as x→±∞
x
10
20
50
100
1000
x3
1000
8000
125,000
1,000,000
1,000,000,000
x
−10
−20
−50
−100
−1000
x3
−1000
−8000
−125,000
−1,000,000
−1,000,000,000
As seen in the table and figure above, as x→∞ the values f(x) become arbitrarily large. Therefore, limx→∞x3=∞.
On the other hand, as x→−∞, the values of f(x)=x3 are negative but become arbitrarily large in magnitude. Consequently, limx→−∞x3=−∞.
infinite limits at infinity (informal)
We say a function f has an infinite limit at infinity and write:
limx→∞f(x)=∞
if f(x) becomes arbitrarily large for x sufficiently large. We say a function has a negative infinite limit at infinity and write:
limx→∞f(x)=−∞
if f(x)<0 and |f(x)| becomes arbitrarily large for x sufficiently large.