Limits at Infinity and Asymptotes: Fresh Take

  • Determine limits and predict how functions behave as x increases or decreases indefinitely
  • Identify and distinguish horizontal and slanting lines that a graph approaches but never touches
  • Use a function’s derivatives to accurately sketch its graph

Limits at Infinity

The Main Idea 

  • Limits at Infinity:
    • Describes behavior of [latex]f(x)[/latex] as [latex]x[/latex] approaches [latex]\infty[/latex] or [latex]-\infty[/latex]
    • Notation: [latex]\lim_{x \to \infty} f(x) = L[/latex] or [latex]\lim_{x \to -\infty} f(x) = L[/latex]
  • Horizontal Asymptotes:
    • Line [latex]y = L[/latex] where [latex]f(x)[/latex] approaches [latex]L[/latex] as [latex]x \to \pm\infty[/latex]
    • Function may cross horizontal asymptote multiple times
  • Infinite Limits at Infinity:
    • When [latex]f(x)[/latex] grows without bound as [latex]x \to \pm\infty[/latex]
    • Notation: [latex]\lim_{x \to \infty} f(x) = \infty[/latex] or [latex]\lim_{x \to \infty} f(x) = -\infty[/latex]
  • Formal Definitions:
    • For finite limits: [latex]\forall \varepsilon > 0, \exists N > 0: |f(x) - L| < \varepsilon[/latex] when [latex]x > N[/latex]
    • For infinite limits: [latex]\forall M > 0, \exists N > 0: f(x) > M[/latex] when [latex]x > N[/latex]
  • Strategies for Evaluation:
    • Use algebraic limit laws
    • Apply the squeeze theorem
    • Analyze rational functions by comparing highest degree terms

Evaluate [latex]\underset{x\to −\infty}{\lim}\left(3+\frac{4}{x}\right)[/latex] and [latex]\underset{x\to \infty }{\lim}\left(3+\frac{4}{x}\right)[/latex]. Determine the horizontal asymptotes of [latex]f(x)=3+\frac{4}{x}[/latex], if any.

Use the formal definition of limit at infinity to prove that [latex]\underset{x\to \infty }{\lim}\left(3 - \dfrac{1}{x^2}\right)=3[/latex].

Use the formal definition of infinite limit at infinity to prove that [latex]\underset{x\to \infty }{\lim}3x^2=\infty[/latex].

End Behavior

The Main Idea 

  • End Behavior:
    • Describes how a function behaves as [latex]x \to \pm\infty[/latex]
    • Three possible outcomes: approach a finite value, approach infinity, or oscillate
  • Polynomial End Behavior:
    • Determined by the highest degree term
    • Even degree: same behavior at both ends
    • Odd degree: opposite behavior at each end
  • Rational Function End Behavior:
    • Depends on the degree relationship between numerator and denominator
    • Three cases: horizontal asymptote, zero asymptote, or unbounded growth
  • Horizontal Asymptotes:
    • [latex]y = L[/latex] where [latex]\lim_{x \to \pm\infty} f(x) = L[/latex]
    • For rational functions [latex]\frac{p(x)}{q(x)}[/latex]:
      • If deg(p) < deg(q): [latex]y = 0[/latex]
      • If deg(p) = deg(q): [latex]y = \frac{a_n}{b_m}[/latex] (ratio of leading coefficients)
      • If deg(p) > deg(q): no horizontal asymptote
  • Transcendental Function End Behavior:
    • Trigonometric: oscillate (no limit)
    • Exponential ([latex]e^x[/latex]): [latex]\to 0[/latex] as [latex]x \to -\infty[/latex], [latex]\to \infty[/latex] as [latex]x \to \infty[/latex]
    • Natural log: [latex]\to -\infty[/latex] as [latex]x \to 0^+[/latex], [latex]\to \infty[/latex] as [latex]x \to \infty[/latex]

Let [latex]f(x)=-3x^4[/latex]. Find [latex]\underset{x\to \infty }{\lim}f(x)[/latex].

Evaluate [latex]\underset{x\to \pm \infty }{\lim}\dfrac{3x^2+2x-1}{5x^2-4x+7}[/latex] and use these limits to determine the end behavior of [latex]f(x)=\dfrac{3x^2+2x-1}{5x^2-4x+7}[/latex].

Evaluate [latex]\underset{x\to \infty }{\lim}\frac{\sqrt{3x^2+4}}{x+6}[/latex].

Find the limits as [latex]x\to \infty[/latex] and [latex]x\to −\infty[/latex] for [latex]f(x)=\dfrac{(3e^x-4)}{(5e^x+2)}[/latex].

Drawing Graphs of Functions

Sketch a graph of [latex]f(x)=(x-1)^3 (x+2)[/latex]

Sketch a graph of [latex]f(x)=\dfrac{3x+5}{8+4x}[/latex]

Find the oblique asymptote for [latex]f(x)=\dfrac{3x^3-2x+1}{2x^2-4}[/latex]

Consider the function [latex]f(x)=5-x^{\frac{2}{3}}[/latex]. Determine the point on the graph where a cusp is located. Determine the end behavior of [latex]f[/latex].