Growth Rates of Functions
Suppose the functions [latex]f[/latex] and [latex]g[/latex] both approach infinity as [latex]x\to \infty[/latex]. Although the values of both functions become arbitrarily large as the values of [latex]x[/latex] become sufficiently large, sometimes one function is growing more quickly than the other.
For example, [latex]f(x)=x^2[/latex] and [latex]g(x)=x^3[/latex] both approach infinity as [latex]x\to \infty[/latex]. However, as shown in the following table, the values of [latex]x^3[/latex] are growing much faster than the values of [latex]x^2[/latex].
[latex]x[/latex] | [latex]10[/latex] | [latex]100[/latex] | [latex]1000[/latex] | [latex]10,000[/latex] |
[latex]f(x)=x^2[/latex] | [latex]100[/latex] | [latex]10,000[/latex] | [latex]1,000,000[/latex] | [latex]100,000,000[/latex] |
[latex]g(x)=x^3[/latex] | [latex]1000[/latex] | [latex]1,000,000[/latex] | [latex]1,000,000,000[/latex] | [latex]1,000,000,000,000[/latex] |
In fact,
As a result, we say [latex]x^3[/latex] is growing more rapidly than [latex]x^2[/latex] as [latex]x\to \infty[/latex].
On the other hand, for [latex]f(x)=x^2[/latex] and [latex]g(x)=3x^2+4x+1[/latex], although the values of [latex]g(x)[/latex] are always greater than the values of [latex]f(x)[/latex] for [latex]x>0[/latex], each value of [latex]g(x)[/latex] is roughly three times the corresponding value of [latex]f(x)[/latex] as [latex]x\to \infty[/latex], as shown in the following table. In fact,
[latex]x[/latex] | [latex]10[/latex] | [latex]100[/latex] | [latex]1000[/latex] | [latex]10,000[/latex] |
[latex]f(x)=x^2[/latex] | [latex]100[/latex] | [latex]10,000[/latex] | [latex]1,000,000[/latex] | [latex]100,000,000[/latex] |
[latex]g(x)=3x^2+4x+1[/latex] | [latex]341[/latex] | [latex]30,401[/latex] | [latex]3,004,001[/latex] | [latex]300,040,001[/latex] |
In this case, we say that [latex]x^2[/latex] and [latex]3x^2+4x+1[/latex] are growing at the same rate as [latex]x\to \infty[/latex].
More generally, suppose [latex]f[/latex] and [latex]g[/latex] are two functions that approach infinity as [latex]x\to \infty[/latex]. We say [latex]g[/latex] grows more rapidly than [latex]f[/latex] as [latex]x\to \infty[/latex] if
On the other hand, if there exists a constant [latex]M \ne 0[/latex] such that
we say [latex]f[/latex] and [latex]g[/latex] grow at the same rate as [latex]x\to \infty[/latex].
Next we see how to use L’Hôpital’s rule to compare the growth rates of power, exponential, and logarithmic functions.
For each of the following pairs of functions, use L’Hôpital’s rule to evaluate [latex]\underset{x\to \infty }{\lim}\left(\dfrac{f(x)}{g(x)}\right)[/latex].
- [latex]f(x)=x^2[/latex] and [latex]g(x)=e^x[/latex]
- [latex]f(x)=\ln x[/latex] and [latex]g(x)=x^2[/latex]
Using the same ideas as in the last example. it is not difficult to show that [latex]e^x[/latex] grows more rapidly than [latex]x^p[/latex] for any [latex]p>0[/latex]. In Figure 5 and the table below it, we compare [latex]e^x[/latex] with [latex]x^3[/latex] and [latex]x^4[/latex] as [latex]x\to \infty[/latex].
[latex]x[/latex] | [latex]5[/latex] | [latex]10[/latex] | [latex]15[/latex] | [latex]20[/latex] |
[latex]x^3[/latex] | [latex]125[/latex] | [latex]1000[/latex] | [latex]3375[/latex] | [latex]8000[/latex] |
[latex]x^4[/latex] | [latex]625[/latex] | [latex]10,000[/latex] | [latex]50,625[/latex] | [latex]160,000[/latex] |
[latex]e^x[/latex] | [latex]148[/latex] | [latex]22,026[/latex] | [latex]3,269,017[/latex] | [latex]485,165,195[/latex] |
Similarly, it is not difficult to show that [latex]x^p[/latex] grows more rapidly than [latex]\ln x[/latex] for any [latex]p>0[/latex]. In Figure 6 and the table below it, we compare [latex]\ln x[/latex] with [latex]\sqrt[3]{x}[/latex] and [latex]\sqrt{x}[/latex].
[latex]x[/latex] | [latex]10[/latex] | [latex]100[/latex] | [latex]1000[/latex] | [latex]10,000[/latex] |
[latex]\ln x[/latex] | [latex]2.303[/latex] | [latex]4.605[/latex] | [latex]6.908[/latex] | [latex]9.210[/latex] |
[latex]\sqrt[3]{x}[/latex] | [latex]2.154[/latex] | [latex]4.642[/latex] | [latex]10[/latex] | [latex]21.544[/latex] |
[latex]\sqrt{x}[/latex] | [latex]3.162[/latex] | [latex]10[/latex] | [latex]31.623[/latex] | [latex]100[/latex] |