- Spot indeterminate forms like in calculations, and use L’Hôpital’s rule to find precise values
- Explain how quickly different functions increase or decrease compared to each other
L’Hôpital’s Rule
The Main Idea
- Purpose:
- Evaluates limits that are otherwise challenging to compute directly
- Resolves indeterminate forms of type [latex]\frac{0}{0}[/latex] and [latex]\frac{\infty}{\infty}[/latex]
- The Rule (0/0 case):
- If [latex]\lim_{x \to a} f(x) = 0[/latex] and [latex]\lim_{x \to a} g(x) = 0[/latex], then: [latex]\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}[/latex]
- The Rule (∞/∞ case):
- If [latex]\lim_{x \to a} f(x) = \pm\infty[/latex] and [latex]\lim_{x \to a} g(x) = \pm\infty[/latex], then: [latex]\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}[/latex]
- Applicability:
- Works for one-sided limits
- Applies when [latex]a = \infty[/latex] or [latex]-\infty[/latex]
- Can be applied repeatedly if needed
- Limitations:
- Only applicable to indeterminate forms [latex]\frac{0}{0}[/latex] and [latex]\frac{\infty}{\infty}[/latex]
- Not applicable when limits of numerator and denominator are finite and non-zero
Evaluate [latex]\underset{x\to 0}{\lim}\dfrac{x}{\tan x}[/latex].
Evaluate [latex]\underset{x\to \infty }{\lim}\dfrac{\ln x}{5x}[/latex]
Other Indeterminate Forms
The Main Idea
- Additional Indeterminate Forms:
- [latex]0 \cdot \infty[/latex]
- [latex]\infty - \infty[/latex]
- [latex]1^{\infty}[/latex]
- [latex]\infty^0[/latex]
- [latex]0^0[/latex]
- Strategy for L’Hôpital’s Rule:
- Rewrite the expression to create a fraction of the form [latex]\frac{0}{0}[/latex] or [latex]\frac{\infty}{\infty}[/latex]
- Apply L’Hôpital’s Rule to the resulting fraction
- Handling [latex]0 \cdot \infty[/latex] Form:
- Rewrite as a fraction, typically [latex]\frac{\text{finite term}}{\frac{1}{\text{infinite term}}}[/latex]
- Handling [latex]\infty - \infty[/latex] Form:
- Combine terms over a common denominator
- Handling Exponential Forms:
- Use logarithms to convert to a product or quotient
- Apply L’Hôpital’s Rule to the resulting expression
Evaluate [latex]\underset{x\to \infty}{\lim} x^{\frac{1}{\ln x}}[/latex]
Evaluate [latex]\underset{x\to 0^+}{\lim} x^x[/latex]
Growth Rates of Functions
The Main Idea
- Comparing Growth Rates:
- Functions can approach infinity at different rates
- We compare their relative growth as [latex]x \to \infty[/latex]
- Defining Faster Growth:
- [latex]g(x)[/latex] grows faster than [latex]f(x)[/latex] if: [latex]\lim_{x \to \infty} \frac{g(x)}{f(x)} = \infty[/latex] or [latex]\lim_{x \to \infty} \frac{f(x)}{g(x)} = 0[/latex]
- Same Growth Rate:
- [latex]f(x)[/latex] and [latex]g(x)[/latex] grow at the same rate if: [latex]\lim_{x \to \infty} \frac{f(x)}{g(x)} = M[/latex], where [latex]M[/latex] is a non-zero constant
- Hierarchy of Growth Rates:
- Exponential > Power > Logarithmic
- [latex]e^x[/latex] grows faster than [latex]x^p[/latex] for any [latex]p > 0[/latex]
- [latex]x^p[/latex] grows faster than [latex]\ln x[/latex] for any [latex]p > 0[/latex]
Compare the growth rates of [latex]x^{100}[/latex] and [latex]2^x[/latex].