Introduction to Integration: Get Stronger

Approximating Areas

  1. State whether the given sums are equal or unequal.
    1. [latex]\underset{i=1}{\overset{10}{\Sigma}} i[/latex] and [latex]\underset{k=1}{\overset{10}{\Sigma}} k[/latex]
    2. [latex]\underset{i=1}{\overset{10}{\Sigma}} i[/latex] and [latex]\underset{i=6}{\overset{15}{\Sigma}} (i-5)[/latex]
    3. [latex]\underset{i=1}{\overset{10}{\Sigma}} i(i-1)[/latex] and [latex]\underset{j=0}{\overset{9}{\Sigma}} (j+1)j[/latex]
    4. [latex]\underset{i=1}{\overset{10}{\Sigma}} i(i-1)[/latex] and [latex]\underset{k=1}{\overset{10}{\Sigma}}(k^2-k)[/latex]

In the following exercise, use the rules for sums of powers of integers to compute the sums.

  1. [latex]\displaystyle\sum_{i=5}^{10} i^2[/latex]

Suppose that [latex]\underset{i=1}{\overset{100}{\Sigma}} a_i=15[/latex] and [latex]\underset{i=1}{\overset{100}{\Sigma}} b_i=-12[/latex]. In the following exercises (3-4), compute the sums.

  1. [latex]\displaystyle\sum_{i=1}^{100} (a_i-b_i)[/latex]
  2. [latex]\displaystyle\sum_{i=1}^{100} (5a_i+4b_i)[/latex]

In the following exercises (5-6), use summation properties and formulas to rewrite and evaluate the sums.

  1. [latex]\displaystyle\sum_{j=1}^{50} (j^2-2j)[/latex]
  2. [latex]\displaystyle\sum_{k=1}^{25} [(2k)^2-100k][/latex]

Let [latex]L_n[/latex] denote the left-endpoint sum using [latex]n[/latex] subintervals and let [latex]R_n[/latex] denote the corresponding right-endpoint sum. In the following exercises (7-10), compute the indicated left and right sums for the given functions on the indicated interval.

  1. [latex]R_4[/latex] for [latex]g(x)= \cos (\pi x)[/latex] on [latex][0,1][/latex]
  2. [latex]R_6[/latex] for [latex]f(x)=\dfrac{1}{x(x-1)}[/latex] on [latex][2,5][/latex]
  3. [latex]L_4[/latex] for [latex]\dfrac{1}{x^2+1}[/latex] on [latex][-2,2][/latex]
  4. [latex]L_8[/latex] for [latex]x^2-2x+1[/latex] on [latex][0,2][/latex]

Express the following endpoint sums in sigma notation but do not evaluate them (11-12).

  1. [latex]L_{10}[/latex] for [latex]f(x)=\sqrt{4-x^2}[/latex] on [latex][-2,2][/latex]
  2. [latex]R_{100}[/latex] for [latex]\ln x[/latex] on [latex][1,e][/latex]

In the following exercises (13-15), graph the function then use a calculator or a computer program to evaluate the following left and right endpoint sums. Is the area under the curve between the left and right endpoint sums?

  1. [latex]L_{100}[/latex] and [latex]R_{100}[/latex] for [latex]y=x^2[/latex] on the interval [latex][0,1][/latex]
  2. [latex]L_{100}[/latex] and [latex]R_{100}[/latex] for [latex]y=x^3[/latex] on the interval [latex][-1,1][/latex]
  3. [latex]L_{100}[/latex] and [latex]R_{100}[/latex] for [latex]y=e^{2x}[/latex] on the interval [latex][-1,1][/latex]

For the following exercises (16-21), solve each problem.

  1. Compute the left and right Riemann sums—[latex]L_6[/latex] and [latex]R_6[/latex], respectively—for [latex]f(x)=(3-|3-x|)[/latex] on [latex][0,6][/latex]. Compute their average value and compare it with the area under the graph of [latex]f[/latex].
  2. Compute the left and right Riemann sums—[latex]L_6[/latex] and [latex]R_6[/latex], respectively—for [latex]f(x)=\sqrt{9-(x-3)^2}[/latex] on [latex][0,6][/latex] and compare their values.
  3. Let [latex]r_j[/latex] denote the total rainfall in Portland on the [latex]j[/latex]th day of the year in 2009. Interpret [latex]\displaystyle\sum_{j=1}^{31} r_j[/latex].
  4. To help get in shape, Joe gets a new pair of running shoes. If Joe runs [latex]1[/latex] mi each day in week 1 and adds [latex]\frac{1}{10}[/latex] mi to his daily routine each week, what is the total mileage on Joe’s shoes after [latex]25[/latex] weeks?
  5. The following table gives the approximate increase in sea level in inches over [latex]20[/latex] years starting in the given year. Estimate the net change in mean sea level from 1870 to 2010.
    Approximate 20-Year Sea Level Increases, 1870–1990Source: http://link.springer.com/article/10.1007%2Fs10712-011-9119-1
    Starting Year 20-Year Change
    [latex]1870[/latex] [latex]0.3[/latex]
    [latex]1890[/latex] [latex]1.5[/latex]
    [latex]1910[/latex] [latex]0.2[/latex]
    [latex]1930[/latex] [latex]2.8[/latex]
    [latex]1950[/latex] [latex]0.7[/latex]
    [latex]1970[/latex] [latex]1.1[/latex]
    [latex]1990[/latex] [latex]1.5[/latex]
  6. The following table gives the percent growth of the U.S. population beginning in July of the year indicated. If the U.S. population was [latex]281,421,906[/latex] in July 2000, estimate the U.S. population in July 2010.
    Annual Percentage Growth of U.S. Population, 2000–2009Source: http://www.census.gov/popest/data.
    Year % Change/Year
    [latex]2000[/latex] [latex]1.12[/latex]
    [latex]2001[/latex] [latex]0.99[/latex]
    [latex]2002[/latex] [latex]0.93[/latex]
    [latex]2003[/latex] [latex]0.86[/latex]
    [latex]2004[/latex] [latex]0.93[/latex]
    [latex]2005[/latex] [latex]0.93[/latex]
    [latex]2006[/latex] [latex]0.97[/latex]
    [latex]2007[/latex] [latex]0.96[/latex]
    [latex]2008[/latex] [latex]0.95[/latex]
    [latex]2009[/latex] [latex]0.88[/latex]

In the following exercises (22-23), estimate the areas under the curves by computing the left Riemann sums, [latex]L_8[/latex].

  1. The graph of a smooth curve going through the points (0,3), (1,2), (2,1), (3,2), (4,3), (5,4), (6,5), (7,4), and (8,3).
  2. The graph of a smooth curve going through the points (0, 3), (1, 5), (2, 7), (3, 6), (4, 8), (5, 6), (6, 5), (7, 4), and (8, 6).

The Definite Integral

In the following exercises (1-5), express the limits as integrals.

  1. [latex]\underset{n\to \infty }{\lim}\underset{i=1}{\overset{n}{\Sigma}}(5(x_i^*)^2-3(x_i^*)^3) \Delta x[/latex] over [latex][0,2][/latex]
  2. [latex]\underset{n\to \infty }{\lim}\underset{i=1}{\overset{n}{\Sigma}} \cos^2 (2\pi x_i^*) \Delta x[/latex] over [latex][0,1][/latex]
  3. [latex]R_n=\frac{1}{n}\underset{i=1}{\overset{n}{\Sigma}}\frac{i}{n}[/latex]
  4. [latex]R_n=\frac{3}{n}\underset{i=1}{\overset{n}{\Sigma}}(3+3\frac{i}{n})[/latex]
  5. [latex]R_n=\frac{1}{n}\underset{i=1}{\overset{n}{\Sigma}}(1+\frac{i}{n})\log((1+\frac{i}{n})^2)[/latex]

In the following exercises (6-8), evaluate the integrals of the functions graphed using the formulas for areas of triangles and circles, and subtracting the areas below the [latex]x[/latex]-axis.

  1. A graph of three isosceles triangles corresponding to the functions 1 - |x-1| over [0,2], 2 - |x-4| over [2,4], and 3 - |x-9| over [6,12]. The first triangle has endpoints at (0,0), (2,0), and (1,1). The second triangle has endpoints at (2,0), (6,0), and (4,2). The last has endpoints at (6,0), (12,0), and (9,3). All three are shaded.
  2. A graph of three shaded triangles. The first has endpoints at (0, 0), (2, 0), and (1, 1) and corresponds to the function 1 - |x-1| over [0, 2]. The second has endpoints at (2, 0), (6, 0), and (4, -2) and corresponds to the function |x-4| - 2 over [2, 6]. The third has endpoints at (6, 0), (12, 0), and (9, 3) and corresponds to the function 3 - |x-9| over [6, 12].
  3. A graph with three shaded parts. The first is a triangle with endpoints at (0, 0), (2, 0), and (1, 1), which corresponds to the function 1 - |x-1| over [0, 2] in quadrant 1. The second is the lower half of a circle with center at (4, 0) and radius two, which corresponds to the function –sqrt(-12 + 8x – x^2) over [2, 6]. The last is a triangle with endpoints at (6, 0), (12, 0), and (9, 3), which corresponds to the function 3 - |x-9| over [6, 12].

In the following exercises (9-12), evaluate the integral using area formulas.

  1. [latex]\displaystyle\int_2^3 (3-x) dx[/latex]
  2. [latex]\displaystyle\int_0^6 (3-|x-3|) dx[/latex]
  3. [latex]\displaystyle\int_1^5 \sqrt{4-(x-3)^2} dx[/latex]
  4. [latex]\displaystyle\int_{-2}^3 (3-|x|) dx[/latex]

In the following exercises (13-14), use averages of values at the left ([latex]L[/latex]) and right ([latex]R[/latex]) endpoints to compute the integrals of the piecewise linear functions with graphs that pass through the given list of points over the indicated intervals.

  1. [latex]\{(0,2),(1,0),(3,5),(5,5),(6,2),(8,0)\}[/latex] over [latex][0,8][/latex]
  2. [latex]\{(-4,0),(-2,2),(0,0),(1,2),(3,2),(4,0)\}[/latex] over [latex][-4,4][/latex]

Suppose that [latex]\displaystyle\int_0^4 f(x) dx=5[/latex] and [latex]\displaystyle\int_0^2 f(x) dx=-3[/latex], and [latex]\displaystyle\int_0^4 g(x) dx=-1[/latex] and [latex]\displaystyle\int_0^2 g(x) dx=2[/latex]. In the following exercises (15-17), compute the integrals.

  1. [latex]\displaystyle\int_2^4 (f(x)+g(x)) dx[/latex]
  2. [latex]\displaystyle\int_2^4 (f(x)-g(x)) dx[/latex]
  3. [latex]\displaystyle\int_2^4 (4f(x)-3g(x)) dx[/latex]

In the following exercises (18-19), use the identity [latex]\displaystyle\int_{−A}^A f(x) dx = \displaystyle\int_{−A}^0 f(x) dx + \displaystyle\int_0^A f(x) dx[/latex] to compute the integrals.

  1. [latex]\displaystyle\int_{−\sqrt{\pi}}^{\sqrt{\pi}} \frac{t}{1+ \cos t} dt[/latex]
  2. [latex]{\displaystyle\int }_{2}^{4}{(x-3)}^{3}dx[/latex] (Hint: Look at the graph of [latex]f[/latex].)

In the following exercises (20-22), given that [latex]\displaystyle\int_0^1 x dx = \frac{1}{2}, \, \displaystyle\int_0^1 x^2 dx = \frac{1}{3}[/latex], and [latex]\displaystyle\int_0^1 x^3 dx = \frac{1}{4}[/latex], compute the integrals.

  1. [latex]\displaystyle\int_0^1 (1-x+x^2-x^3) dx[/latex]
  2. [latex]\displaystyle\int_0^1 (1-2x)^3 dx[/latex]
  3. [latex]\displaystyle\int_0^1 (7-5x^3) dx[/latex]

In the following exercises (23-25), use the comparison theorem.

  1. Show that [latex]\displaystyle\int_{-2}^3 (x-3)(x+2) dx \le 0[/latex].
  2. Show that [latex]\displaystyle\int_1^2 \sqrt{1+x} dx \le \displaystyle\int_1^2 \sqrt{1+x^2} dx[/latex].
  3. Show that [latex]\displaystyle\int_{−\pi/4}^{\pi/4} \cos t dt \ge \pi \sqrt{2}/4[/latex].

In the following exercises (26-28), find the average value [latex]f_{\text{ave}}[/latex] of [latex]f[/latex] between [latex]a[/latex] and [latex]b[/latex], and find a point [latex]c[/latex], where [latex]f(c)=f_{\text{ave}}[/latex].

  1. [latex]f(x)=x^5, \, a=-1, \, b=1[/latex]
  2. [latex]f(x)=(3-|x|), \, a=-3, \, b=3[/latex]
  3. [latex]f(x)= \cos x, \, a=0, \, b=2\pi[/latex]

In the following exercises (29-30), approximate the average value using Riemann sums [latex]L_{100}[/latex] and [latex]R_{100}[/latex]. How does your answer compare with the exact given answer?

  1. [latex]y=e^{x/2}[/latex] over the interval [latex][0,1][/latex]; the exact solution is [latex]2(\sqrt{e}-1)[/latex].
  2. [latex]y=\dfrac{x+1}{\sqrt{4-x^2}}[/latex] over the interval [latex][-1,1][/latex]; the exact solution is [latex]\frac{\pi }{6}[/latex].

In the following exercises (31-33), compute the average value using the left Riemann sums [latex]L_N[/latex] for [latex]N=1,10,100[/latex]. How does the accuracy compare with the given exact value?

  1. [latex]y=xe^{x^2}[/latex] over the interval [latex][0,2][/latex]; the exact solution is [latex]\frac{1}{4}(e^4-1)[/latex].
  2. [latex]y=x \sin (x^2)[/latex] over the interval [latex][−\pi ,0][/latex]; the exact solution is [latex]\dfrac{\cos (\pi^2)-1}{2\pi}[/latex].
  3. Suppose that [latex]A=\displaystyle\int_{−\pi/4}^{\pi/4} \sec^2 t dt = \pi[/latex] and [latex]B=\displaystyle\int_{−\pi/4}^{\pi/4} \tan^2 t dt[/latex]. Show that [latex]B-A=\frac{\pi }{2}[/latex].

The Fundamental Theorem of Calculus

In the following exercises (1-8), use the Fundamental Theorem of Calculus, Part 1, to find each derivative.

  1. [latex]\frac{d}{dx}{\displaystyle\int }_{1}^{x}{e}^{ \cos t}dt[/latex]
  2. [latex]\frac{d}{dx}{\displaystyle\int }_{4}^{x}\frac{ds}{\sqrt{16-{s}^{2}}}[/latex]
  3. [latex]\frac{d}{dx}{\displaystyle\int }_{0}^{\sqrt{x}}tdt[/latex]
  4. [latex]\frac{d}{dx}{\displaystyle\int }_{ \cos x}^{1}\sqrt{1-{t}^{2}}dt[/latex]
  5. [latex]\frac{d}{dx}{\displaystyle\int }_{1}^{{x}^{2}}\frac{\sqrt{t}}{1+t}dt[/latex]
  6. [latex]\frac{d}{dx}{\displaystyle\int }_{1}^{{e}^{2}}\text{ln}{u}^{2}du[/latex]
  7. The graph of [latex]y={\displaystyle\int }_{0}^{x}f(t)dt,[/latex] where [latex]f[/latex] is a piecewise constant function, is shown here. A graph of a function with linear segments that goes through the points (0, 0), (1, -1), (2, 1), (3, 1), (4, -2), (5, -2), and (6, 0). The area over the function but under the x axis over the interval [0, 1.5] and [3.25, 6] is shaded. The area under the function but over the x axis over the interval [1.5, 3.25] is shaded.
    1. Over which intervals is [latex]f[/latex] positive? Over which intervals is it negative? Over which intervals, if any, is it equal to zero?
    2. What are the maximum and minimum values of [latex]f[/latex]?
    3. What is the average value of [latex]f[/latex]?
  8. The graph of [latex]y={\displaystyle\int }_{0}^{x}\ell (t)dt,[/latex] where is a piecewise linear function, is shown here. A graph of a function that goes through the points (0, 0), (1, 1), (2, 0), (3, -1), (4.5, 0), (5, 1), and (6, 2). The area under the function and over the x axis over the intervals [0, 2] and [4.5, 6] is shaded. The area over the function and under the x axis over the interval [2, 2.5] is shaded.
    1. Over which intervals is positive? Over which intervals is it negative? Over which, if any, is it zero?
    2. Over which intervals is increasing? Over which is it decreasing? Over which intervals, if any, is it constant?
    3. What is the average value of ?

In the following exercises (9-21), use a calculator to estimate the area under the curve by computing T10, the average of the left- and right-endpoint Riemann sums using [latex]N=10[/latex] rectangles. Then, using the Fundamental Theorem of Calculus, Part 2, determine the exact area.

  1. [latex]y={x}^{3}+6{x}^{2}+x-5[/latex] over [latex]\left[-4,2\right][/latex]
  2. [latex]y=\sqrt{x}+{x}^{2}[/latex] over [latex]\left[1,9\right][/latex]
  3. [latex]\displaystyle\int \frac{4}{{x}^{2}}dx[/latex] over [latex]\left[1,4\right][/latex]
  4. [latex]{\displaystyle\int }_{-2}^{3}({x}^{2}+3x-5)dx[/latex]
  5. [latex]{\displaystyle\int }_{2}^{3}({t}^{2}-9)(4-{t}^{2})dt[/latex]
  6. [latex]{\displaystyle\int }_{0}^{1}{x}^{99}dx[/latex]
  7. [latex]{\displaystyle\int }_{1\text{/}4}^{4}({x}^{2}-\frac{1}{{x}^{2}})dx[/latex]
  8. [latex]{\displaystyle\int }_{1}^{4}\frac{1}{2\sqrt{x}}dx[/latex]
  9. [latex]{\displaystyle\int }_{1}^{16}\frac{dt}{{t}^{1\text{/}4}}[/latex]
  10. [latex]{\displaystyle\int }_{0}^{\pi \text{/}2} \sin \theta d\theta[/latex]
  11. [latex]{\displaystyle\int }_{0}^{\pi \text{/}4} \sec \theta \tan {\theta}d\theta[/latex]
  12. [latex]{\displaystyle\int }_{\pi \text{/}4}^{\pi \text{/}2}{ \csc }^{2}\theta d\theta[/latex]
  13. [latex]{\displaystyle\int }_{-2}^{-1}(\frac{1}{{t}^{2}}-\frac{1}{{t}^{3}})dt[/latex]

In the following exercises (22-23), use the evaluation theorem to express the integral as a function [latex]F(x).[/latex]

  1. [latex]{\displaystyle\int }_{1}^{x}{e}^{t}dt[/latex]
  2. [latex]{\displaystyle\int }_{\text{−}x}^{x} \sin tdt[/latex]

In the following exercises (24-25), identify the roots of the integrand to remove absolute values, then evaluate using the Fundamental Theorem of Calculus, Part 2.

  1. [latex]{\displaystyle\int }_{-2}^{4}|{t}^{2}-2t-3|dt[/latex]
  2. [latex]{\displaystyle\int }_{\text{−}\pi \text{/}2}^{\pi \text{/}2}| \sin t|dt[/latex]

For the following exercises (26-29), solve each problem.

  1. Suppose the rate of gasoline consumption in the United States can be modeled by a sinusoidal function of the form [latex](11.21- \cos (\frac{\pi t}{6}))×{10}^{9}[/latex] gal/mo.
    1. What is the average monthly consumption, and for which values of [latex]t[/latex] is the rate at time [latex]t[/latex] equal to the average rate?
    2. What is the number of gallons of gasoline consumed in the United States in a year?
    3. Write an integral that expresses the average monthly U.S. gas consumption during the part of the year between the beginning of April [latex](t=3)[/latex] and the end of September [latex](t=9\text{).}[/latex]
  2. Explain why, if [latex]f[/latex] is continuous over [latex]\left[a,b\right][/latex] and is not equal to a constant, there is at least one point [latex]M\in \left[a,b\right][/latex] such that [latex]f(M)=\frac{1}{b-a}{\displaystyle\int }_{a}^{b}f(t)dt[/latex] and at least one point [latex]m\in \left[a,b\right][/latex] such that [latex]f(m)<\frac{1}{b-a}{\displaystyle\int }_{a}^{b}f(t)dt.[/latex]
  3. A point on an ellipse with major axis length 2[latex]a[/latex] and minor axis length 2[latex]b[/latex] has the coordinates [latex](a \cos \theta ,b \sin \theta ),0\le \theta \le 2\pi .[/latex]
    1. Show that the distance from this point to the focus at [latex](\text{−}c,0)[/latex] is [latex]d(\theta )=a+c \cos \theta ,[/latex] where [latex]c=\sqrt{{a}^{2}-{b}^{2}}.[/latex]
    2. Use these coordinates to show that the average distance [latex]\overline{d}[/latex] from a point on the ellipse to the focus at [latex](\text{−}c,0),[/latex] with respect to angle θ, is [latex]a[/latex].
  4. The force of gravitational attraction between the Sun and a planet is [latex]F(\theta )=\frac{GmM}{{r}^{2}(\theta )},[/latex] where [latex]m[/latex] is the mass of the planet, M is the mass of the Sun, G is a universal constant, and [latex]r(\theta )[/latex] is the distance between the Sun and the planet when the planet is at an angle θ with the major axis of its orbit. Assuming that M, [latex]m[/latex], and the ellipse parameters [latex]a[/latex] and [latex]b[/latex] (half-lengths of the major and minor axes) are given, set up—but do not evaluate—an integral that expresses in terms of [latex]G,m,M,a,b[/latex] the average gravitational force between the Sun and the planet.

Integration Formulas and the Net Change Theorem

Use basic integration formulas to compute the following antiderivatives or definite integrals (1-3).

  1. [latex]\displaystyle\int (\sqrt{x}-\frac{1}{\sqrt{x}})dx[/latex]
  2. [latex]\displaystyle\int \frac{dx}{2x}[/latex]
  3. [latex]{\int }_{0}^{\pi }( \sin x- \cos x)dx[/latex]

For the following exercises (4-21), solve each problem.

  1. Write an integral that expresses the increase in the perimeter [latex]P(s)[/latex] of a square when its side length [latex]s[/latex] increases from [latex]2[/latex] units to [latex]4[/latex] units and evaluate the integral. 
  2. A regular N-gon (an N-sided polygon with sides that have equal length [latex]s[/latex], such as a pentagon or hexagon) has perimeter Ns. Write an integral that expresses the increase in perimeter of a regular N-gon when the length of each side increases from [latex]1[/latex] unit to [latex]2[/latex] units and evaluate the integral.
  3. A dodecahedron is a Platonic solid with a surface that consists of [latex]12[/latex] pentagons, each of equal area. By how much does the surface area of a dodecahedron increase as the side length of each pentagon doubles from [latex]1[/latex] unit to [latex]2[/latex] units?
  4. Write an integral that quantifies the change in the area of the surface of a cube when its side length doubles from [latex]s[/latex] unit to [latex]2s[/latex] units and evaluate the integral.
  5. Write an integral that quantifies the increase in the surface area of a sphere as its radius doubles from R unit to [latex]2[/latex]R units and evaluate the integral.
  6. Suppose that a particle moves along a straight line with velocity [latex]v(t)=4-2t,[/latex] where [latex]0\le t\le 2[/latex] (in meters per second). Find the displacement at time [latex]t[/latex] and the total distance traveled up to [latex]t=2.[/latex]
  7. Suppose that a particle moves along a straight line with velocity defined by [latex]v(t)=|2t-6|,[/latex] where [latex]0\le t\le 6[/latex] (in meters per second). Find the displacement at time [latex]t[/latex] and the total distance traveled up to [latex]t=6.[/latex]
  8. A ball is thrown upward from a height of [latex]1.5[/latex] m at an initial speed of [latex]40[/latex] m/sec. Acceleration resulting from gravity is −[latex]9.8[/latex] m/sec2. Neglecting air resistance, solve for the velocity [latex]v(t)[/latex] and the height [latex]h(t)[/latex] of the ball [latex]t[/latex] seconds after it is thrown and before it returns to the ground.
  9. The area [latex]A(t)[/latex] of a circular shape is growing at a constant rate. If the area increases from [latex]4[/latex]π units to [latex]9[/latex]π units between times [latex]t=2[/latex] and [latex]t=3,[/latex] find the net change in the radius during that time.
  10. Water flows into a conical tank with cross-sectional area πx2 at height [latex]x[/latex] and volume [latex]\frac{\pi {x}^{3}}{3}[/latex] up to height [latex]x[/latex]. If water flows into the tank at a rate of [latex]1[/latex] m3/min, find the height of water in the tank after [latex]5[/latex] min. Find the change in height between [latex]5[/latex] min and [latex]10[/latex] min.
  11. The following table lists the electrical power in gigawatts—the rate at which energy is consumed—used in a certain city for different hours of the day, in a typical 24-hour period, with hour [latex]1[/latex] corresponding to midnight to 1 a.m.
    Hour Power Hour Power
    [latex]1[/latex] [latex]28[/latex] [latex]13[/latex] [latex]48[/latex]
    [latex]2[/latex] [latex]25[/latex] [latex]14[/latex] [latex]49[/latex]
    [latex]3[/latex] [latex]24[/latex] [latex]15[/latex] [latex]49[/latex]
    [latex]4[/latex] [latex]23[/latex] [latex]16[/latex] [latex]50[/latex]
    [latex]5[/latex] [latex]24[/latex] [latex]17[/latex] [latex]50[/latex]
    [latex]6[/latex] [latex]27[/latex] [latex]18[/latex] [latex]50[/latex]
    [latex]7[/latex] [latex]29[/latex] [latex]19[/latex] [latex]46[/latex]
    [latex]8[/latex] [latex]32[/latex] [latex]20[/latex] [latex]43[/latex]
    [latex]9[/latex] [latex]34[/latex] [latex]21[/latex] [latex]42[/latex]
    [latex]10[/latex] [latex]39[/latex] [latex]22[/latex] [latex]40[/latex]
    [latex]11[/latex] [latex]42[/latex] [latex]23[/latex] [latex]37[/latex]
    [latex]12[/latex] [latex]46[/latex] [latex]24[/latex] [latex]34[/latex]

    Find the total amount of power in gigawatt-hours (gW-h) consumed by the city in a typical 24-hour period.

  12. The data in the following table are used to estimate the average power output produced by Peter Sagan for each of the last [latex]18[/latex] sec of Stage 1 of the 2012 Tour de France.
    Average Power OutputSource: sportsexercisengineering.com
    Second Watts Second Watts
    [latex]1[/latex] [latex]600[/latex] [latex]10[/latex] [latex]1200[/latex]
    [latex]2[/latex] [latex]500[/latex] [latex]11[/latex] [latex]1170[/latex]
    [latex]3[/latex] [latex]575[/latex] [latex]12[/latex] [latex]1125[/latex]
    [latex]4[/latex] [latex]1050[/latex] [latex]13[/latex] [latex]1100[/latex]
    [latex]5[/latex] [latex]925[/latex] [latex]14[/latex] [latex]1075[/latex]
    [latex]6[/latex] [latex]950[/latex] [latex]15[/latex] [latex]1000[/latex]
    [latex]7[/latex] [latex]1050[/latex] [latex]16[/latex] [latex]950[/latex]
    [latex]8[/latex] [latex]950[/latex] [latex]17[/latex] [latex]900[/latex]
    [latex]9[/latex] [latex]1100[/latex] [latex]18[/latex] [latex]780[/latex]

    Estimate the net energy used in kilojoules (kJ), noting that [latex]1[/latex]W [latex]= 1[/latex] J/s, and the average power output by Sagan during this time interval.

  13. The distribution of incomes as of 2012 in the United States in [latex]$5000[/latex] increments is given in the following table. The [latex]k[/latex]th row denotes the percentage of households with incomes between [latex]$5000xk[/latex] and [latex]5000xk+4999.[/latex] The row [latex]k=40[/latex] contains all households with income between [latex]$200,000[/latex] and [latex]$250,000[/latex] and [latex]k=41[/latex] accounts for all households with income exceeding [latex]$250,000[/latex].
    Income DistributionsSource: http://www.census.gov/prod/2013pubs/p60-245.pdf
    [latex]0[/latex] [latex]3.5[/latex] [latex]21[/latex] [latex]1.5[/latex]
    [latex]1[/latex] [latex]4.1[/latex] [latex]22[/latex] [latex]1.4[/latex]
    [latex]2[/latex] [latex]5.9[/latex] [latex]23[/latex] [latex]1.3[/latex]
    [latex]3[/latex] [latex]5.7[/latex] [latex]24[/latex] [latex]1.3[/latex]
    [latex]4[/latex] [latex]5.9[/latex] [latex]25[/latex] [latex]1.1[/latex]
    [latex]5[/latex] [latex]5.4[/latex] [latex]26[/latex] [latex]1.0[/latex]
    [latex]6[/latex] [latex]5.5[/latex] [latex]27[/latex] [latex]0.75[/latex]
    [latex]7[/latex] [latex]5.1[/latex] [latex]28[/latex] [latex]0.8[/latex]
    [latex]8[/latex] [latex]4.8[/latex] [latex]29[/latex] [latex]1.0[/latex]
    [latex]9[/latex] [latex]4.1[/latex] [latex]30[/latex] [latex]0.6[/latex]
    [latex]10[/latex] [latex]4.3[/latex] [latex]31[/latex] [latex]0.6[/latex]
    [latex]11[/latex] [latex]3.5[/latex] [latex]32[/latex] [latex]0.5[/latex]
    [latex]12[/latex] [latex]3.7[/latex] [latex]33[/latex] [latex]0.5[/latex]
    [latex]13[/latex] [latex]3.2[/latex] [latex]34[/latex] [latex]0.4[/latex]
    [latex]14[/latex] [latex]3.0[/latex] [latex]35[/latex] [latex]0.3[/latex]
    [latex]15[/latex] [latex]2.8[/latex] [latex]36[/latex] [latex]0.3[/latex]
    [latex]16[/latex] [latex]2.5[/latex] [latex]37[/latex] [latex]0.3[/latex]
    [latex]17[/latex] [latex]2.2[/latex] [latex]38[/latex] [latex]0.2[/latex]
    [latex]18[/latex] [latex]2.2[/latex] [latex]39[/latex] [latex]1.8[/latex]
    [latex]19[/latex] [latex]1.8[/latex] [latex]40[/latex] [latex]2.3[/latex]
    [latex]20[/latex] [latex]2.1[/latex] [latex]41[/latex]  
    1. Estimate the percentage of U.S. households in 2012 with incomes less than [latex]$55,000[/latex].
    2. What percentage of households had incomes exceeding [latex]$85,000[/latex]?
    3. Plot the data and try to fit its shape to that of a graph of the form [latex]a(x+c){e}^{\text{−}b(x+e)}[/latex] for suitable [latex]a,b,c.[/latex]
  14. For a given motor vehicle, the maximum achievable deceleration from braking is approximately [latex]7[/latex] m/sec2 on dry concrete. On wet asphalt, it is approximately [latex]2.5[/latex] m/sec2. Given that 1 mph corresponds to [latex]0.447[/latex] m/sec, find the total distance that a car travels in meters on dry concrete after the brakes are applied until it comes to a complete stop if the initial velocity is [latex]67[/latex] mph ([latex]30[/latex] m/sec) or if the initial braking velocity is [latex]56[/latex] mph ([latex]25[/latex] m/sec). Find the corresponding distances if the surface is slippery wet asphalt.
  15. Sandra is a [latex]25[/latex]-year old woman who weighs [latex]120[/latex] lb. She burns [latex]300-50t[/latex] cal/hr while walking on her treadmill. Her caloric intake from drinking Gatorade is [latex]100t[/latex] calories during the [latex]t[/latex]th hour. What is her net decrease in calories after walking for [latex]3[/latex] hours?
  16. Although some engines are more efficient at given a horsepower than others, on average, fuel efficiency decreases with horsepower at a rate of [latex]1\text{/}25[/latex] mpg/horsepower. If a typical [latex]50[/latex]-horsepower engine has an average fuel efficiency of [latex]32[/latex] mpg, what is the average fuel efficiency of an engine with the following horsepower: [latex]150[/latex], [latex]300[/latex], [latex]450[/latex]?
  17. The following table provides hypothetical data regarding the level of service for a certain highway.
    Highway Speed Range (mph) Vehicles per Hour per Lane Density Range (vehicles/mi)
    [latex]> 60[/latex] [latex]< 600[/latex] [latex]< 10[/latex]
    [latex]60–57[/latex] [latex]600–1000[/latex] [latex]10–20[/latex]
    [latex]57–54[/latex] [latex]1000–1500[/latex] [latex]20–30[/latex]
    [latex]54–46[/latex] [latex]1500–1900[/latex] [latex]30–45[/latex]
    [latex]46–30[/latex] [latex]1900–2100[/latex] [latex]45–70[/latex]
    [latex]<30[/latex] Unstable [latex]70–200[/latex]
    1. Plot vehicles per hour per lane on the [latex]x[/latex]-axis and highway speed on the [latex]y[/latex]-axis.
    2. Compute the average decrease in speed (in miles per hour) per unit increase in congestion (vehicles per hour per lane) as the latter increases from [latex]600[/latex] to [latex]1000[/latex], from [latex]1000[/latex] to [latex]1500[/latex], and from [latex]1500[/latex] to [latex]2100[/latex]. Does the decrease in miles per hour depend linearly on the increase in vehicles per hour per lane?
    3. Plot minutes per mile ([latex]60[/latex] times the reciprocal of miles per hour) as a function of vehicles per hour per lane. Is this function linear?
  18. An athlete runs by a motion detector, which records her speed, as displayed in the following table. The best linear fit to this data, [latex]\ell (t)=-0.068t+5.14\text{,}[/latex] is shown in the accompanying graph. Use the average value of [latex]\ell (t)[/latex] between [latex]t=0[/latex] and [latex]t=40[/latex] to estimate the runner’s average speed.
    Minutes Speed (m/sec)
    [latex]0[/latex] [latex]5[/latex]
    [latex]10[/latex] [latex]4.8[/latex]
    [latex]20[/latex] [latex]3.6[/latex]
    [latex]30[/latex] [latex]3.0[/latex]
    [latex]40[/latex] [latex]2.5[/latex]

    A graph of the data and a line to approximate the data.