- Identify when to use substitution to simplify and solve integrals
 - Apply substitution methods to find indefinite integrals
 - Apply substitution methods to find definite integrals
 
Substitution for Indefinite Integrals
The Main Idea
- Integration by substitution is a technique for evaluating integrals. It’s useful when the integrand is the result of a chain-rule derivative
 - The method involves changing variables to simplify the integral
 - Key form to recognize:
- [latex]\int f(g(x))g'(x)dx[/latex]
 
 - Substitution Theorem:
- For [latex]u = g(x)[/latex] where [latex]g'(x)[/latex] is continuous: [latex]\int f(g(x))g'(x)dx = \int f(u)du = F(u) + C = F(g(x)) + C[/latex]
 
 - Process:
- Choose [latex]u = g(x)[/latex] such that [latex]g'(x)[/latex] is part of the integrand
 - Express the integral in terms of [latex]u[/latex]
 - Integrate with respect to [latex]u[/latex]
 - Substitute back to express the result in terms of [latex]x[/latex]
 
 - Sometimes need to adjust by a constant factor when [latex]du[/latex] doesn’t match exactly
 - May need to express [latex]x[/latex] in terms of [latex]u[/latex] to eliminate all [latex]x[/latex] terms
 
Use substitution to find the antiderivative of [latex]\displaystyle\int 3{x}^{2}{({x}^{3}-3)}^{2}dx.[/latex]
Use substitution to find the antiderivative of [latex]\displaystyle\int {x}^{2}{({x}^{3}+5)}^{9}dx.[/latex]
Use substitution to evaluate the integral [latex]\displaystyle\int \frac{ \cos t}{{ \sin }^{2}t}dt.[/latex]
Use substitution to evaluate the indefinite integral [latex]\displaystyle\int { \cos }^{3}t \sin tdt.[/latex]
Substitution for Definite Integrals
The Main Idea
- Substitution can be applied to definite integrals
 - The limits of integration must be adjusted when changing variables
 - The technique combines substitution with the Fundamental Theorem of Calculus
 - Substitution Theorem for Definite Integrals:
- If [latex]u = g(x)[/latex] and [latex]g'(x)[/latex] is continuous on [latex][a,b][/latex], then: [latex]\int_a^b f(g(x))g'(x)dx = \int_{g(a)}^{g(b)} f(u)du[/latex]
 
 - Process:
- Choose [latex]u = g(x)[/latex] as in indefinite integration
 - Express the integrand in terms of [latex]u[/latex]
 - Change the limits of integration from [latex]x[/latex] to [latex]u[/latex] values
 - Integrate with respect to [latex]u[/latex]
 - Evaluate the integral using the new limits
 
 - Alternative Approach:
- Perform substitution without changing limits
 - Find the antiderivative in terms of [latex]u[/latex]
 - Substitute back to [latex]x[/latex] before evaluating at the original limits
 
 - Combining Techniques:
- Substitution may be used alongside other integration techniques
 - Trigonometric identities might be needed before substitution
 
 
Use substitution to evaluate the definite integral [latex]{\displaystyle\int }_{-1}^{0}y{(2{y}^{2}-3)}^{5}dy.[/latex]
Use substitution to evaluate [latex]{\displaystyle\int }_{0}^{1}{x}^{2} \cos \left(\frac{\pi }{2}{x}^{3}\right)dx.[/latex]
Let [latex]u={x}^{3}-3.[/latex]
[latex]\displaystyle\int 3{x}^{2}{({x}^{3}-3)}^{2}dx=\frac{1}{3}{({x}^{3}-3)}^{3}+C[/latex]