Integrals Resulting in Inverse Trigonometric Functions: Fresh Take

  • Calculate integrals that lead to inverse trigonometric function solutions

Integrals Resulting in Inverse Trigonometric Functions

The Main Idea 

  • Integration formulas yielding inverse trigonometric functions
  • Domain restrictions for inverse trigonometric functions
  • Connection between derivatives of inverse trig functions and these integrals
  • Application of these formulas to various types of integrals
  • Handling negative integrands in inverse trig integrals

Key Formulas

  • [latex]\int \frac{du}{\sqrt{a^2 - u^2}} = \sin^{-1}(\frac{u}{|a|}) + C[/latex]
  • [latex]\int \frac{du}{a^2 + u^2} = \frac{1}{a}\tan^{-1}(\frac{u}{a}) + C[/latex]
  • [latex]\int \frac{du}{u\sqrt{u^2 - a^2}} = \frac{1}{|a|}\sec^{-1}(\frac{|u|}{a}) + C[/latex]

Key Concepts

  • Domain Restrictions:
    • Inverse trig functions have restricted domains
    • Solutions must respect these domain restrictions
  • Recognizing Integrands:
    • Identify integrands that match standard forms
    • Use substitution to transform integrals into these forms
  • Relationship to Derivatives:
    • These integrals are related to derivatives of inverse trig functions
    • Understanding this connection aids in application
  • Handling Negative Integrands:
    • Factor out [latex]-1[/latex] from negative integrands
    • Use existing formulas rather than memorizing new ones
  • Substitution Techniques:
    • Often necessary to transform integrals into standard forms
    • May involve adjusting constants or variables

Find the antiderivative of [latex]\displaystyle\int \frac{dx}{\sqrt{1-16{x}^{2}}}.[/latex]

Find the indefinite integral using an inverse trigonometric function and substitution for [latex]\displaystyle\int \frac{dx}{\sqrt{9-{x}^{2}}}.[/latex]

Use substitution to find the antiderivative of [latex]\displaystyle\int \frac{dx}{25+4{x}^{2}}.[/latex]

Find the antiderivative of [latex]\displaystyle\int \frac{dx}{16+{x}^{2}}.[/latex]

Evaluate the definite integral [latex]{\displaystyle\int }_{0}^{2}\dfrac{dx}{4+{x}^{2}}.[/latex]