Integrals, Exponential Functions, and Logarithms: Fresh Take

  • Understand the natural logarithm and the mathematical constant e using integrals
  • Identify how to differentiate the natural logarithm function
  • Perform integrations where the natural logarithm is involved
  • Understand how to find derivatives and integrals of exponential functions
  • Convert logarithmic and exponential expressions to base e forms

The Natural Logarithm as an Integral

The Main Idea 

  • Definition of Natural Logarithm: [latex]\ln x = \int_1^x \frac{1}{t} dt[/latex] for [latex]x > 0[/latex]
  • Key Properties:
    • [latex]\frac{d}{dx} \ln x = \frac{1}{x}[/latex]
    • [latex]\int \frac{1}{u} du = \ln |u| + C[/latex]
    • [latex]\ln 1 = 0[/latex]
    • [latex]\ln(ab) = \ln a + \ln b[/latex]
    • [latex]\ln(\frac{a}{b}) = \ln a - \ln b[/latex]
    • [latex]\ln(a^r) = r \ln a[/latex] (for rational r)
  • Graphical Interpretation:
    • Area under [latex]y = \frac{1}{t}[/latex] from [latex]1[/latex] to [latex]x (x > 1)[/latex]
    • Negative area under [latex]y = \frac{1}{t}[/latex] from [latex]x[/latex] to [latex]1[/latex] ([latex]0 < x < 1[/latex])

Problem-Solving Strategy

  1. Recognize logarithmic forms in integrals
  2. Use logarithm properties to simplify expressions
  3. Apply chain rule for derivatives of logarithmic functions
  4. Use u-substitution for integrals involving [latex]\frac{1}{u}[/latex]

Calculate the following derivatives:

  1. [latex]\frac{d}{dx}\text{ln}(2{x}^{2}+x)[/latex]
  2. [latex]\frac{d}{dx}{(\text{ln}({x}^{3}))}^{2}[/latex]

Calculate the integral [latex]\displaystyle\int \frac{x}{{x}^{2}+4}dx.[/latex]

Use properties of logarithms to simplify the following expression into a single logarithm:

[latex]\text{ln}8-\text{ln}2-\text{ln}(\frac{1}{4}).[/latex]

Evaluate [latex]\int \frac{x^3 + 2x}{x^4 + 4x^2 + 4} dx[/latex]

Properties of the Exponential Function

The Main Idea 

  • Definition of [latex]e[/latex]:
    • [latex]e[/latex] is the unique number such that [latex]\ln e = 1[/latex]
    • Approximately [latex]2.71828182846...[/latex]
  • Exponential Function:
    • Defined as the inverse of [latex]\ln x[/latex]
    • [latex]e^x = \exp(x)[/latex] for all real [latex]x[/latex]
  • Key Properties:
    • [latex]e^{\ln x} = x[/latex] for [latex]x > 0[/latex]
    • [latex]\ln(e^x) = x[/latex] for all [latex]x[/latex]
    • [latex]e^p e^q = e^{p+q}[/latex]
    • [latex]\frac{e^p}{e^q} = e^{p-q}[/latex]
    • [latex]{({e}^{p})}^{r}={e}^{pr}[/latex] (r rational)
  • Derivatives and Integrals:
    • [latex]\frac{d}{dx}e^x = e^x[/latex]
    • [latex]\int e^x dx = e^x + C[/latex]

Evaluate the following derivatives:

  1. [latex]\frac{d}{dx}(\frac{{e}^{{x}^{2}}}{{e}^{5x}})[/latex]
  2. [latex]\frac{d}{dt}{({e}^{2t})}^{3}[/latex]

Evaluate the following integral: [latex]\displaystyle\int 2x{e}^{\text{−}{x}^{2}}dx.[/latex]

Find [latex]\frac{d}{dx}(e^{2x^3 + \sin x})[/latex]

General Logarithmic and Exponential Functions

The Main Idea 

  • Definition of General Exponential Functions:
    • For [latex]a > 0[/latex] and any real [latex]x[/latex]: [latex]y = a^x = e^{x \ln a}[/latex]
  • Derivatives of General Exponential Functions:
    • [latex]\frac{d}{dx} a^x = a^x \ln a[/latex]
  • Integrals of General Exponential Functions:
    • [latex]\int a^x dx = \frac{1}{\ln a} a^x + C[/latex]
  • General Logarithm Functions:
    • Inverse of [latex]a^x[/latex] when [latex]a \neq 1[/latex]
    • [latex]y = \log_a x[/latex] if and only if [latex]x = a^y[/latex]
  • Relationship to Natural Logarithm:
    • [latex]\log_a x = \frac{\ln x}{\ln a}[/latex]
  • Derivatives of General Logarithm Functions:
    • [latex]\frac{d}{dx} \log_a x = \frac{1}{x \ln a}[/latex]

Evaluate the following derivatives:

  1. [latex]\frac{d}{dt}{4}^{{t}^{4}}[/latex]
  2. [latex]\frac{d}{dx}{\text{log}}_{3}(\sqrt{{x}^{2}+1})[/latex]

Evaluate the following integral: [latex]\displaystyle\int \frac{3}{{2}^{3x}}dx.[/latex]

Evaluate the following derivative:

[latex]\frac{d}{dx} (3^x \cdot \log_2(x^2 + 1))[/latex]