- Work with exponential functions to find their values
- Recognize logarithmic functions, explore their relationship with exponential functions, and change their bases
- Identify hyperbolic functions their graphs, and understand their fundamental identities
Exponential Functions
Exponential functions arise in many applications. One common example is population growth.
If a population starts with [latex]P_0[/latex] individuals and then grows at an annual rate of [latex]2\%[/latex], its population after [latex]1[/latex] year is
Its population after [latex]2[/latex] years is
In general, its population after [latex]t[/latex] years is
which is an exponential function.
More generally, any function of the form [latex]f(x)=b^x[/latex], where [latex]b>0, \, b \ne 1[/latex], is an exponential function with base [latex]b[/latex] and exponent [latex]x[/latex]. Exponential functions have constant bases and variable exponents.
exponential function
For any real number [latex]x[/latex], an exponential function is a function with the form
[latex]f(x)=ab^x[/latex]
where,
- [latex]a[/latex] is a non-zero real number called the initial value and
- [latex]b[/latex] is any positive real number ([latex]b>0[/latex]) such that [latex]b≠1[/latex].
Why do we limit the base [latex]b[/latex] to positive values?
To ensure that the outputs will be real numbers. Observe what happens if the base is not positive:
- Let [latex]b=−9[/latex] and [latex]x=\frac{1}{2}[/latex]. Then [latex]f(x)=f(\frac{1}{2})=(−9)^\frac{1}{2}=\sqrt{−9}[/latex], which is not a real number.
Why do we limit the base to positive values other than [latex]1[/latex]?
Because base [latex]1[/latex] results in the constant function. Observe what happens if the base is [latex]1[/latex]:
- Let [latex]b=1[/latex]. Then [latex]f(x)=1^x=1[/latex] for any value of [latex]x[/latex].
Note that a function of the form [latex]f(x)=x^b[/latex] for some constant [latex]b[/latex] is not an exponential function but a power function.
To see the difference between an exponential function and a power function, we can compare the functions [latex]y=x^2[/latex] and [latex]y=2^x[/latex].
In the table below, we see that both [latex]2^x[/latex] and [latex]x^2[/latex] approach infinity as [latex]x \to \infty[/latex]. Eventually, however, [latex]2^x[/latex] becomes larger than [latex]x^2[/latex] and grows more rapidly as [latex]x \to \infty[/latex]. In the opposite direction, as [latex]x \to −\infty, \, x^2 \to \infty[/latex], whereas [latex]2^x \to 0[/latex]. The line [latex]y=0[/latex] is a horizontal asymptote for [latex]y=2^x[/latex].
[latex]\mathbf{x}[/latex] | [latex]\mathbf{x^2}[/latex] | [latex]\mathbf{2^x}[/latex] |
[latex]-3[/latex] | [latex]9[/latex] | [latex]1/8[/latex] |
[latex]-2[/latex] | [latex]4[/latex] | [latex]1/4[/latex] |
[latex]-1[/latex] | [latex]1[/latex] | [latex]1/2[/latex] |
[latex]0[/latex] | [latex]0[/latex] | [latex]1[/latex] |
[latex]1[/latex] | [latex]1[/latex] | [latex]2[/latex] |
[latex]2[/latex] | [latex]4[/latex] | [latex]4[/latex] |
[latex]3[/latex] | [latex]9[/latex] | [latex]8[/latex] |
[latex]4[/latex] | [latex]16[/latex] | [latex]16[/latex] |
[latex]5[/latex] | [latex]25[/latex] | [latex]32[/latex] |
[latex]6[/latex] | [latex]36[/latex] | [latex]64[/latex] |
Arrow Notation | |
---|---|
Symbol | Meaning |
[latex]x\to \infty[/latex] | [latex]x[/latex] approaches infinity ([latex]x[/latex] increases without bound) |
[latex]x\to -\infty[/latex] | [latex]x[/latex] approaches negative infinity ([latex]x[/latex] decreases without bound) |
[latex]f\left(x\right)\to \infty[/latex] | the output approaches infinity (the output increases without bound) |
[latex]f\left(x\right)\to -\infty[/latex] | the output approaches negative infinity (the output decreases without bound) |
[latex]f\left(x\right)\to a[/latex] | the output approaches [latex]a[/latex] |