Exponential and Logarithmic Functions: Fresh Take

  • Identify and evaluate exponential functions
  • Analyze logarithmic functions by identifying forms, understanding their exponential relationships, and calculating different base logarithms
  • Identify the hyperbolic functions, their graphs, and basic identities 

Exponential Functions

The Main Idea 

  • Definition of Exponential Functions:
    • Form: [latex]f(x) = ab^x[/latex]
    • [latex]a[/latex] is a non-zero real number (initial value)
    • [latex]b[/latex] is a positive real number, [latex]b \neq 1[/latex] (base)
  • Characteristics:
    • Constant base, variable exponent
    • Rapid growth compared to power functions
    • Domain: all real numbers
    • Range: [latex](0, ∞)[/latex] for [latex]b > 1[/latex], [latex](0, ∞)[/latex] for [latex]0 < b < 1[/latex]
  • Evaluating Exponential Functions:
    • Substitute the given value for [latex]x[/latex]
    • Follow order of operations
    • Pay attention to parentheses and exponents
  • Laws of Exponents:
    • Product of Powers: [latex]b^x \cdot b^y = b^{x+y}[/latex]
    • Quotient of Powers: [latex]\frac{b^x}{b^y} = b^{x-y}[/latex]
    • Power of a Power: [latex](b^x)^y=b^{xy}[/latex]
    • Power of a Product: [latex](ab)^x=a^x b^x[/latex]
    • Power of a Quotient: [latex]\dfrac{a^x}{b^x} =\left(\dfrac{a}{b}\right)^x[/latex]
  • Applications:
    • Population growth
    • Compound interest
    • Radioactive decay

Given the exponential function [latex]f(x)=100·3^{x/2}[/latex], evaluate [latex]f(4)[/latex] and [latex]f(10)[/latex].

Go to World Population Balance for another example of exponential population growth.

Simplify the following expression and then evaluate it for [latex]x = 2[/latex]:

[latex]\dfrac{(3x^{2})^3 \cdot 2^{x-1}}{9x^{-1} \cdot 4^{x+2}}[/latex]

Use the laws of exponents to simplify [latex]\dfrac{(6x^{-3}y^2)}{(12x^{-4}y^5)}[/latex].

Logarithmic Functions

The Main Idea 

  • Definition of Logarithmic Functions:
    • Inverse of exponential functions
    • [latex]\log_b(x) = y[/latex] if and only if [latex]b^y = x[/latex]
    • Domain: [latex](0, ∞)[/latex], Range: [latex](-∞, ∞)[/latex]
  • Common Logarithms:
    • Base 10: [latex]\log_{10}(x)[/latex], often written as [latex]\log(x)[/latex]
    • Natural log: [latex]\log_e(x)[/latex], written as [latex]\ln(x)[/latex]
  • Properties of Logarithms:
    • Product: [latex]\log_b(xy) = \log_b(x) + \log_b(y)[/latex]
    • Quotient: [latex]\log_b(\frac{x}{y}) = \log_b(x) - \log_b(y)[/latex]
    • Power: [latex]\log_b(x^n) = n\log_b(x)[/latex]
  • Change-of-Base Formula:
    • [latex]\log_a(x) = \dfrac{\log_b(x)}{\log_b(a)}[/latex]
    • Useful for calculating logs with non-standard bases
  • Solving Logarithmic Equations:
    • Often involves converting to exponential form
    • May require using logarithm properties to simplify

Solve [latex]\dfrac{e^{2x}}{(3+e^{2x})}=\dfrac{1}{2}[/latex].

Solve [latex]\ln(x^3)-4 \ln (x)=1[/latex].

Use the change-of-base formula and a calculator to evaluate [latex]\log_4 6[/latex].

Hyperbolic Functions 

The Main Idea 

  • Definitions of Hyperbolic Functions:
    • [latex]\cosh x = \dfrac{e^x + e^{-x}}{2}[/latex]
    • [latex]\sinh x = \dfrac{e^x - e^{-x}}{2}[/latex]
    • [latex]\tanh x = \dfrac{\sinh x}{\cosh x} = \frac{e^x - e^{-x}}{e^x + e^{-x}}[/latex]
    • [latex]\text{csch} x = \dfrac{1}{\sinh x}[/latex]
    • [latex]\text{sech} x = \dfrac{1}{\cosh x}[/latex]
    • [latex]\coth x = \dfrac{\cosh x}{\sinh x}[/latex]
  • Graphs and Behavior:
    • [latex]\cosh x[/latex]: Similar to [latex]|e^x|[/latex], always [latex]≥ 1[/latex]
    • [latex]\sinh x[/latex]: Odd function, similar to [latex]e^x[/latex] for large x
    • [latex]\tanh x[/latex]: Odd function, approaches [latex]±1[/latex] as [latex]x → ±∞[/latex]
  • Key Identities:
    • [latex]\cosh^2 x - \sinh^2 x = 1[/latex]
    • [latex]1 - \tanh^2 x = \text{sech} ^2 x[/latex]
    • [latex]\coth^2 x-1=\text{csch}^2 x[/latex]
    • [latex]\sinh(x \pm y)=\sinh x \cosh y \pm \cosh x \sinh y[/latex]
    • [latex]\cosh (x \pm y)=\cosh x \cosh y \pm \sinh x \sinh y[/latex]
    • [latex]\cosh x + \sinh x = e^x[/latex]
    • [latex]\cosh x-\sinh x=e^{−x}[/latex]
  • Inverse Hyperbolic Functions:
    • [latex]\sinh^{-1} x = \ln(x + \sqrt{x^2 + 1})[/latex]
    • [latex]\cosh^{-1} x = \ln(x + \sqrt{x^2 - 1})[/latex] ([latex]x ≥ 1[/latex])
    • [latex]\tanh^{-1} x = \frac{1}{2}\ln(\frac{1+x}{1-x})[/latex] ([latex]|x| < 1[/latex])

Simplify and evaluate [latex]\sinh(\cosh^{-1}(3))[/latex].

Simplify [latex]\cosh(2 \ln x)[/latex].

Evaluate [latex]\tanh^{-1}\left(\frac{1}{2}\right)[/latex].