- Identify and evaluate exponential functions
- Analyze logarithmic functions by identifying forms, understanding their exponential relationships, and calculating different base logarithms
- Identify the hyperbolic functions, their graphs, and basic identities
Exponential Functions
The Main Idea
- Definition of Exponential Functions:
- Form: [latex]f(x) = ab^x[/latex]
- [latex]a[/latex] is a non-zero real number (initial value)
- [latex]b[/latex] is a positive real number, [latex]b \neq 1[/latex] (base)
- Characteristics:
- Constant base, variable exponent
- Rapid growth compared to power functions
- Domain: all real numbers
- Range: [latex](0, ∞)[/latex] for [latex]b > 1[/latex], [latex](0, ∞)[/latex] for [latex]0 < b < 1[/latex]
- Evaluating Exponential Functions:
- Substitute the given value for [latex]x[/latex]
- Follow order of operations
- Pay attention to parentheses and exponents
- Laws of Exponents:
- Product of Powers: [latex]b^x \cdot b^y = b^{x+y}[/latex]
- Quotient of Powers: [latex]\frac{b^x}{b^y} = b^{x-y}[/latex]
- Power of a Power: [latex](b^x)^y=b^{xy}[/latex]
- Power of a Product: [latex](ab)^x=a^x b^x[/latex]
- Power of a Quotient: [latex]\dfrac{a^x}{b^x} =\left(\dfrac{a}{b}\right)^x[/latex]
- Applications:
- Population growth
- Compound interest
- Radioactive decay
Given the exponential function [latex]f(x)=100·3^{x/2}[/latex], evaluate [latex]f(4)[/latex] and [latex]f(10)[/latex].
Go to World Population Balance for another example of exponential population growth.
Simplify the following expression and then evaluate it for [latex]x = 2[/latex]:
[latex]\dfrac{(3x^{2})^3 \cdot 2^{x-1}}{9x^{-1} \cdot 4^{x+2}}[/latex]
Use the laws of exponents to simplify [latex]\dfrac{(6x^{-3}y^2)}{(12x^{-4}y^5)}[/latex].
Logarithmic Functions
The Main Idea
- Definition of Logarithmic Functions:
- Inverse of exponential functions
- [latex]\log_b(x) = y[/latex] if and only if [latex]b^y = x[/latex]
- Domain: [latex](0, ∞)[/latex], Range: [latex](-∞, ∞)[/latex]
- Common Logarithms:
- Base 10: [latex]\log_{10}(x)[/latex], often written as [latex]\log(x)[/latex]
- Natural log: [latex]\log_e(x)[/latex], written as [latex]\ln(x)[/latex]
- Properties of Logarithms:
- Product: [latex]\log_b(xy) = \log_b(x) + \log_b(y)[/latex]
- Quotient: [latex]\log_b(\frac{x}{y}) = \log_b(x) - \log_b(y)[/latex]
- Power: [latex]\log_b(x^n) = n\log_b(x)[/latex]
- Change-of-Base Formula:
- [latex]\log_a(x) = \dfrac{\log_b(x)}{\log_b(a)}[/latex]
- Useful for calculating logs with non-standard bases
- Solving Logarithmic Equations:
- Often involves converting to exponential form
- May require using logarithm properties to simplify
Solve [latex]\dfrac{e^{2x}}{(3+e^{2x})}=\dfrac{1}{2}[/latex].
Solve [latex]\ln(x^3)-4 \ln (x)=1[/latex].
Use the change-of-base formula and a calculator to evaluate [latex]\log_4 6[/latex].
Hyperbolic Functions
The Main Idea
- Definitions of Hyperbolic Functions:
- [latex]\cosh x = \dfrac{e^x + e^{-x}}{2}[/latex]
- [latex]\sinh x = \dfrac{e^x - e^{-x}}{2}[/latex]
- [latex]\tanh x = \dfrac{\sinh x}{\cosh x} = \frac{e^x - e^{-x}}{e^x + e^{-x}}[/latex]
- [latex]\text{csch} x = \dfrac{1}{\sinh x}[/latex]
- [latex]\text{sech} x = \dfrac{1}{\cosh x}[/latex]
- [latex]\coth x = \dfrac{\cosh x}{\sinh x}[/latex]
- Graphs and Behavior:
- [latex]\cosh x[/latex]: Similar to [latex]|e^x|[/latex], always [latex]≥ 1[/latex]
- [latex]\sinh x[/latex]: Odd function, similar to [latex]e^x[/latex] for large x
- [latex]\tanh x[/latex]: Odd function, approaches [latex]±1[/latex] as [latex]x → ±∞[/latex]
- Key Identities:
- [latex]\cosh^2 x - \sinh^2 x = 1[/latex]
- [latex]1 - \tanh^2 x = \text{sech} ^2 x[/latex]
- [latex]\coth^2 x-1=\text{csch}^2 x[/latex]
- [latex]\sinh(x \pm y)=\sinh x \cosh y \pm \cosh x \sinh y[/latex]
- [latex]\cosh (x \pm y)=\cosh x \cosh y \pm \sinh x \sinh y[/latex]
- [latex]\cosh x + \sinh x = e^x[/latex]
- [latex]\cosh x-\sinh x=e^{−x}[/latex]
- Inverse Hyperbolic Functions:
- [latex]\sinh^{-1} x = \ln(x + \sqrt{x^2 + 1})[/latex]
- [latex]\cosh^{-1} x = \ln(x + \sqrt{x^2 - 1})[/latex] ([latex]x ≥ 1[/latex])
- [latex]\tanh^{-1} x = \frac{1}{2}\ln(\frac{1+x}{1-x})[/latex] ([latex]|x| < 1[/latex])
Simplify and evaluate [latex]\sinh(\cosh^{-1}(3))[/latex].
Simplify [latex]\cosh(2 \ln x)[/latex].
Evaluate [latex]\tanh^{-1}\left(\frac{1}{2}\right)[/latex].