Determining Volumes by Slicing: Learn It 2

Solids of Revolution and the Slicing Method

If a region in a plane is revolved around a line in that plane, the resulting solid is called a solid of revolution.

This figure has three graphs. The first graph, labeled “a” is a region in the x y plane. The region is created by a curve above the x-axis and the x-axis. The second graph, labeled “b” is the same region as in “a”, but it shows the region beginning to rotate around the x-axis. The third graph, labeled “c” is the solid formed by rotating the region from “a” completely around the x-axis, forming a solid.
Figure 5. (a) This is the region that is revolved around the x-axis. (b) As the region begins to revolve around the axis, it sweeps out a solid of revolution. (c) This is the solid that results when the revolution is complete.

Solids of revolution are common in mechanical applications, such as machine parts produced by a lathe. We spend the rest of this section looking at solids of this type.

The next example uses the slicing method to calculate the volume of a solid of revolution.

Use the slicing method to find the volume of the solid of revolution bounded by the graphs of [latex]f(x)={x}^{2}-4x+5,x=1,\text{ and }x=4,[/latex] and rotated about the [latex]x\text{-axis}\text{.}[/latex]

Use the method of slicing to find the volume of the solid of revolution formed by revolving the region between the graph of the function [latex]f(x)=\frac{1}{x}[/latex] and the [latex]x\text{-axis}[/latex] over the interval [latex]\left[1,2\right][/latex] around the [latex]x\text{-axis}\text{.}[/latex] See the following figure.

This figure has two graphs. The first graph is the curve f(x)=1/x. It is a decreasing curve, above the x-axis in the first quadrant. The graph has a shaded region under the curve between x=1 and x=2. The second graph is the curve f(x)=1/x in the first quadrant. Also, underneath this graph, there is a solid between x=1 and x=2 that has been formed by rotating the region from the first graph around the x-axis.
Figure 8.