Derivatives of Trigonometric Functions: Learn It 2

Derivatives of Other Trigonometric Functions

To further explore the derivatives of trigonometric functions, we use the quotient rule and other calculus techniques since the remaining trigonometric functions are expressed as quotients involving sine and cosine.

Find the derivative of [latex]f(x)= \tan x[/latex].

Find the derivative of [latex]f(x)= \cot x[/latex].

The derivatives of the remaining trigonometric functions may be obtained by using similar techniques. 

derivatives of  [latex]\tan x, \, \cot x, \, \sec x[/latex], and [latex]\csc x[/latex]

  • Derivative of Tangent:
    [latex]\frac{d}{dx}(\tan x)=\sec^2 x[/latex]
  • Derivative of Cotangent:
    [latex]\frac{d}{dx}(\cot x)=−\csc^2 x[/latex]
  • Derivative of Secant:
    [latex]\frac{d}{dx}(\sec x)= \sec x \tan x[/latex]
  • Derivative of Cosecant:
    [latex]\frac{d}{dx}(\csc x)=−\csc x \cot x[/latex]

As you navigate problems involving derivatives of trigonometric functions, don’t forget our handy table of trigonometric function values of common angles:

Angle [latex]0[/latex] [latex]\frac{\pi }{6},\text{ or }{30}^{\circ}[/latex] [latex]\frac{\pi }{4},\text{ or } {45}^{\circ }[/latex] [latex]\frac{\pi }{3},\text{ or }{60}^{\circ }[/latex] [latex]\frac{\pi }{2},\text{ or }{90}^{\circ }[/latex]
Cosine [latex]1[/latex] [latex]\frac{\sqrt{3}}{2}[/latex] [latex]\frac{\sqrt{2}}{2}[/latex] [latex]\frac{1}{2}[/latex] [latex]0[/latex]
Sine [latex]0[/latex] [latex]\frac{1}{2}[/latex] [latex]\frac{\sqrt{2}}{2}[/latex] [latex]\frac{\sqrt{3}}{2}[/latex] [latex]1[/latex]
Tangent [latex]0[/latex] [latex]\frac{\sqrt{3}}{3}[/latex] [latex]1[/latex] [latex]\sqrt{3}[/latex] Undefined
Secant [latex]1[/latex] [latex]\frac{2\sqrt{3}}{3}[/latex] [latex]\sqrt{2}[/latex] [latex]2[/latex] Undefined
Cosecant Undefined [latex]2[/latex] [latex]\sqrt{2}[/latex] [latex]\frac{2\sqrt{3}}{3}[/latex] [latex]1[/latex]
Cotangent Undefined [latex]\sqrt{3}[/latex] [latex]1[/latex] [latex]\frac{\sqrt{3}}{3}[/latex] [latex]0[/latex]

Find the equation of a line tangent to the graph of [latex]f(x)= \cot x[/latex] at [latex]x=\dfrac{\pi}{4}[/latex].

Find the derivative of [latex]f(x)= \csc x+x \tan x.[/latex]