Limits at Infinity and Asymptotes
- [latex]x=1[/latex]
- [latex]x=-1, \, x=2[/latex]
- [latex]x=0[/latex]
- Yes, there is a vertical asymptote
- Yes, there is a vertical asymptote
- [latex]0[/latex]
- [latex]\infty[/latex]
- [latex]-\frac{1}{7}[/latex]
- –[latex]2[/latex]
- –[latex]4[/latex]
- Horizontal: none, vertical: [latex]x=0[/latex]
- Horizontal: none, vertical: [latex]x=\pm 2[/latex]
- Horizontal: none, vertical: none
- Horizontal: [latex]y=0[/latex], vertical: [latex]x=\pm 1[/latex]
- Horizontal: [latex]y=0[/latex], vertical: [latex]x=0[/latex] and [latex]x=-1[/latex]
- Horizontal: [latex]y=1[/latex], vertical: [latex]x=1[/latex]
- Horizontal: none, vertical: none
- Answers will vary, for example: [latex]y=\frac{2x}{x-1}[/latex]
- Answers will vary, for example: [latex]y=\frac{4x}{x+1}[/latex]
- [latex]y=0[/latex]
- [latex]\infty[/latex]
- [latex]y=3[/latex]
Applied Optimization Problems
- The critical points can be the minima, maxima, or neither.
- False; [latex]y=−x^2[/latex] has a minimum only
- [latex]h=\frac{62}{3}[/latex] in.
- [latex]1[/latex]
- [latex]100[/latex] ft by [latex]100[/latex] ft
- [latex]40[/latex] ft by [latex]40[/latex] ft
- [latex]19.73[/latex] ft.
- [latex]T(\theta)=\frac{40\theta}{3v}+\frac{40 \cos \theta}{v}[/latex]
- approximately [latex]34.02[/latex] mph
- [latex]4[/latex]
- [latex]0[/latex]
- Maximal: [latex]x=5, \, y=5[/latex]; minimal: [latex]x=0, \, y=10[/latex] and [latex]y=0, \, x=10[/latex]
- Maximal: [latex]x=1, \, y=9[/latex]; minimal: none
- [latex]\frac{4\pi}{3\sqrt{3}}[/latex]
- [latex]6[/latex]
- [latex]r=2, \, h=4[/latex]
- [latex](2,1)[/latex]
- [latex](0.8351,0.6974)[/latex]
- [latex]A=20r-2r^2-\frac{1}{2}\pi r^2[/latex]
- [latex]C(x)=5x^2+\frac{32}{x}[/latex]
- [latex]P(x)=(50-x)(800+25x-50)[/latex]
L’Hôpital’s Rule
- [latex]\infty[/latex]
- [latex]\frac{1}{2a}[/latex]
- [latex]\frac{1}{na^{n-1}}[/latex]
- Cannot apply directly; use logarithms
- Cannot apply directly; rewrite as [latex]\underset{x\to 0}{\lim} x^3[/latex]
- [latex]6[/latex]
- –[latex]2[/latex]
- –[latex]1[/latex]
- [latex]n[/latex]
- [latex]-\frac{1}{2}[/latex]
- [latex]\frac{1}{2}[/latex]
- [latex]1[/latex]
- [latex]\frac{1}{6}[/latex]
- [latex]1[/latex]
- [latex]0[/latex]
- [latex]0[/latex]
- –[latex]1[/latex]
- [latex]\infty[/latex]
- [latex]0[/latex]
- [latex]\frac{1}{e}[/latex]
- [latex]0[/latex]
- [latex]1[/latex]
- [latex]0[/latex]
- [latex]\tan (1)[/latex]
- [latex]2[/latex]
Newton’s Method
-
- [latex]F(x_n)=x_n-\frac{(x_n)^3+2x_n+1}{3(x_n)^2+2}[/latex]
- [latex]F(x_n)=x_n-\frac{e^{x_n}}{e^{x_n}}[/latex]
- [latex]|c|>0.5[/latex] fails, [latex]|c|\le 0.5[/latex] works
- [latex]c=\frac{1}{f^{\prime}(x_n)}[/latex]
-
- [latex]x_1=\frac{12}{25}, \, x_2=\frac{312}{625}[/latex]
- [latex]x_1=-4, \, x_2=-40[/latex]
-
- [latex]x_1=1.291, \, x_2=0.8801[/latex]
- [latex]x_1=0.7071, \, x_2=1.189[/latex]
-
- [latex]x_1=-\frac{26}{25}, \, x_2=-\frac{1224}{625}[/latex]
- [latex]x_1=4, \, x_2=18[/latex]
-
- [latex]x_1=\frac{6}{10}, \, x_2=\frac{6}{10}[/latex]
- [latex]x_1=2, \, x_2=2[/latex]
- [latex]3.1623[/latex] or –[latex]3.1623[/latex]
- [latex]0[/latex], –[latex]1[/latex], or [latex]1[/latex]
- [latex]0[/latex]
- [latex]0.5188[/latex] or –[latex]1.2906[/latex]
- [latex]0[/latex]
- [latex]4.493[/latex]
- [latex]0.159[/latex], [latex]3.146[/latex]
- To find candidates for maxima and minima, we need to find the critical points [latex]f^{\prime}(x)=0[/latex]. Show that to solve for the critical points of a function [latex]f(x)[/latex], Newton’s method is given by [latex]x_{n+1}=x_n-\frac{f^{\prime}(x_n)}{f^{\prime \prime}(x_n)}[/latex].
- We need [latex]f[/latex] to be twice continuously differentiable.
- [latex]x=0[/latex]
- [latex]x=-1[/latex]
<li[latex]x=5.619[/latex]
- [latex]x=-1.326[/latex]
- There is no solution to the equation.
- It enters a cycle.
- [latex]0[/latex]
- –[latex]0.3513[/latex]
- Newton: [latex]11[/latex] iterations, secant: [latex]16[/latex] iterations
- Newton: three iterations, secant: six iterations
- Newton: five iterations, secant: eight iterations
- [latex]E=4.071[/latex]
- [latex]4.394\%[/latex]
Antiderivatives
- [latex]F^{\prime}(x)=15x^2+4x+3[/latex]
- [latex]F^{\prime}(x)=2xe^x+x^2e^x[/latex]
- [latex]F^{\prime}(x)=e^x[/latex]
- [latex]F(x)=e^x-x^3- \cos (x)+C[/latex]
- [latex]F(x)=\frac{x^2}{2}-x-2 \cos (2x)+C[/latex]
- [latex]F(x)=\frac{1}{2}x^2+4x^3+C[/latex]
- [latex]F(x)=\frac{2}{5}(\sqrt{x})^5+C[/latex]
- [latex]F(x)=\frac{3}{2}x^{2/3}+C[/latex]
- [latex]F(x)=x+ \tan (x)+C[/latex]
- [latex]F(x)=\frac{1}{3} \sin^3 (x)+C[/latex]
- [latex]F(x)=-\frac{1}{2} \cot (x)-\frac{1}{x}+C[/latex]
- [latex]F(x)=− \sec x-4 \csc x+C[/latex]
- [latex]F(x)=-\frac{1}{8}e^{-4x}- \cos x+C[/latex]
- [latex]− \cos x+C[/latex]
- [latex]3x-\frac{2}{x}+C[/latex]
- [latex]\frac{8}{3}x^{3/2}+\frac{4}{5}x^{5/4}+C[/latex]
- [latex]14x-\frac{2}{x}-\frac{1}{2x^2}+C[/latex]
- [latex]f(x)=-\frac{1}{2x^2}+\frac{3}{2}[/latex]
- [latex]f(x)= \sin x+ \tan x+1[/latex]
- [latex]f(x)=-\frac{1}{6}x^3-\frac{2}{x}+\frac{13}{6}[/latex]
- Answers may vary; one possible answer is [latex]f(x)=e^{−x}[/latex]
- Answers may vary; one possible answer is [latex]f(x)=− \sin x[/latex]
- [latex]5.867[/latex] sec
- [latex]7.333[/latex] sec
- [latex]13.75[/latex] ft/sec2
- [latex]F(x)=\frac{1}{3}x^3+2x[/latex]
- [latex]F(x)=x^2- \cos x+1[/latex]
- [latex]F(x)=-\frac{1}{x+1}+1[/latex]
- True
- False