Contextual Applications of Derivatives: Background You’ll Need 2

  • Use the power rule to simplify logarithmic expressions

Using the Power Rule for Logarithms

The power rule for logarithms is a fundamental concept that simplifies the process of working with logarithmic expressions involving powers.

How can we take the logarithm of a power, such as [latex]{x}^{2}[/latex]? One method is as follows:

[latex]\begin{array}{l}{\mathrm{log}}_{b}\left({x}^{2}\right)\hfill & ={\mathrm{log}}_{b}\left(x\cdot x\right)\hfill \\ \hfill & ={\mathrm{log}}_{b}x+{\mathrm{log}}_{b}x\hfill \\ \hfill & =2{\mathrm{log}}_{b}x\hfill \end{array}[/latex]

Notice that we used the product rule for logarithms to find a solution for the example above. By doing so, we have derived the power rule for logarithms, which says that the log of a power is equal to the exponent times the log of the base. Keep in mind that although the input to a logarithm may not be written as a power, we may be able to change it to a power. 

[latex]\begin{array}{lll}100={10}^{2}, \hfill & \sqrt{3}={3}^{\frac{1}{2}}, \hfill & \frac{1}{e}={e}^{-1}\hfill \end{array}[/latex]

power rule for logarithms

The power rule for logarithms can be used to simplify the logarithm of a power by rewriting it as the product of the exponent times the logarithm of the base.

[latex]{\mathrm{log}}_{b}\left({M}^{n}\right)=n{\mathrm{log}}_{b}M[/latex]

Rewrite [latex]{\mathrm{log}}_{2}{x}^{5}[/latex].

Rewrite [latex]{\mathrm{log}}_{3}\left(25\right)[/latex] using the power rule for logs.


definition